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A SYSTEM RELIABILITY APPROACH TO THE LIFETIME OPTIMIZA- 

TION OF INSPECTION AND REPAIR OF HIGHWAY BRIDGES 

Thesis directed by Professor Dan M. Frangopol 

The United States has a national inventory of almost 600,000 high- 

way bridges, many of which have deteriorated substantially and will require 

large expenditures to repair. Given that funds and resources are scarce, system 

reliability and optimization techniques have the potential to more efficiently 

maintain an adequate level of safety in these highway bridges while minimiz- 

ing the total expected life-cycle cost. This study develops a reliability-based 

methodology for optimizing the inspection and repair of highway bridges. 

An optimization method for inspection is proposed which relies on 

an event tree and the probability of making a repair to determine the optimal 

timing and number of inspections over the life of a structure. The method is 

developed and illustrated using a hypothetical structure, deterioration model, 

cost data, and inspection techniques. The method is later applied to an actual 

bridge deck using actual cost data, a chloride penetration model, and the 

half-cell potential method. 

First-Order Reliability Method theory for component and system re- 

liability is covered. A computer program RELSYS (RELiability of SYStems) 

is developed which computes the reliability index and probability of failure 

for any structural system which can be modeled as a series-parallel combina- 

tion of components. The program is completely described through numerical 

examples and a comprehensive user's manual. 
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Using a system reliability approach, a hypothetical deterioration 

model is applied to statically determinate and indeterminate truss structures. 

Repairs are made whenever the system reliability index of the truss falls below 

a prescribed minimum level. A component reliability threshold is established 

to determine which components are repaired. The optimum component thresh- 

old reliability is based on minimizing total life-cycle cost from which a repair 

strategy is developed. 

This system reliability approach is applied to the existing Colorado 

State Highway Bridge E-17-AH. All relevant bridge failure modes are identi- 

fied and their component reliabilities are computed. The bridge is modeled as 

a series-parallel combination of these failure modes. Both the load rating and 

the system reliability of the index of the bridge are computed and compared. 

Using realistic live-load and deterioration models, the system reliability in- 

dex of the bridge is evaluated over time. Considering several realistic repair 

options, the bridge is repaired every time its system reliability falls below a 

prescribed minimum value. The optimum lifetime repair strategy is based on 

all feasible combinations of repair options and cost data developed in consult 

with the Colorado Department of Transportation. Since the system reliability 

model is entirely strength-based, serviceability issues are addressed through 

serviceability flags. 

A method for updating the bridge repair strategy over time is in- 

troduced based on the results of inspections. Updating the reliability of a 

bridge using data from the PONTIS Bridge Management System is investi- 

gated. The repair strategy is updated based on the hypothetical results of 

specifically selected non-destructive evaluation tests. 
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CHAPTER I 

INTRODUCTION 

1.1   Overview 

After years of planning, construction, and coordination between many 

crafts and professions, the opening of a new bridge, dam, or airport is a sig- 

nificant triumph. To many, the ribbon cutting ceremony represents the final 

chapter in a long process that started with a concept and worked its way 

through design, funding, permits, contracts, construction, and acceptance of 

the final product. For most civil engineering structures with expected useful 

lives that can range from thirty to over one hundred years, deterioration over 

time is expected. After the design and construction are complete, an equally 

costly and important process of inspection and maintenance is needed to sus- 

tain this new structure at an adequate and safe level of performance over its 

useful life. 

In the past, inspection and repair programs have largely been based 

on common sense, past experience, and local practice. Only recently have 

the techniques of reliability and structural optimization been used to develop 

maintenance programs which make the most efficient use of available resources. 

This study will focus on only one type of civil engineering structure, the high- 

way bridge, and examine how system reliability techniques can be employed to 



optimize its inspection and repair. In a recent survey of the field of reliability- 

based studies, Frangopol and Corotis [1996] concluded that there is a major 

gap between the progress of reliability optimization theory and its applica- 

tion to the practice of structural engineering. This thesis will hopefully help 

"bridge that gap". 

With the maintenance of almost 600,000 U.S. highway bridges funded 

by the federal government alone [O'Connor and Hyman 1989], the annual 

cost of inspection and repair of bridges is significant. With ever increasing 

budgetary constraints and the continuing decay of the nation's infrastructure, 

it is more important than ever to use these funds efficiently. The cost of 

inspection and repair is high but the cost of no action is even higher in terms 

of loss of life, eroded confidence, and interrupted commerce. Comparing this 

cost of failure to the cost of inspection and repair provides insight to the 

optimal level of funding needed. 

The risk of failure in a highway bridge or any other structure can 

never be totally eliminated. The risk can be reduced but eventually a point of 

diminished marginal returns is reached where minor reductions in risk require 

unjustified costs. Because the acceptance of risk requires that uncertainty be 

quantified, reliability techniques are useful and appropriate. A deterministic 

analysis of the problem provides output which is precise and appears exact, but 

which ignores the uncertainty of the input. Even a crude reliability approach 

provides an indication of the risk being assumed. 

This study will attempt to optimize the inspection and repair of high- 



way bridges using a system reliability approach. For example, the bridge deck 

may be deteriorating over time due to cracks and spalls in the concrete, the 

steel girders are experiencing section loss due to corrosion, and the expansion 

joints are eroding due to the combined effects of weather and traffic. While the 

individual reliabilities of these components may be above a minimum specified 

level, the combined effects of this deterioration may cause the bridge to be un- 

safe. Given the planned life of the structure, the optimal degree of repair must 

be assessed. It may be that repairing the deck or the girder alone will provide 

sufficient safety to the structure for its remaining life. A more complete repair 

may be required. 

In order for a defect to be repaired, it must first be detected. All 

bridges in the U.S. undergo periodic visual inspections, usually every two 

years. Many defects such as concrete spalls, steel beam corrosion, and non- 

functioning roller bearings can be easily seen by an inspector. Other defects 

such as fatigue cracking or chloride ion penetration in concrete are much more 

difficult to detect and may require expensive non-destructive inspection tech- 

niques such as ultrasound, radar, or thermography. Reliability methods can 

be used to help optimize the timing and the technique for effective inspection. 

The flow of this study is from the abstract and theoretical to the spe- 

cific and practical. The early chapters develop inspection and repair models 

using fictitious cost data and simplified hypothetical structures and deterio- 

ration models to illustrate the theory behind the methodology and to observe 

critical trends. The later chapters will apply the models to a specific bridge us- 



ing realistic deterioration models and Colorado Department of Transportation 

cost data. The ultimate goal is to integrate the reliability-based model into 

the existing bridge management system where data from inspections can be 

used to assess reliability and update the maintenance strategy for the bridge. 

1.2 Objective 

The objective of this study is to develop and demonstrate a method- 

ology for evaluating the system reliability of a highway bridge over time and 

to develop an optimum inspection and repair strategy for that bridge that can 

be updated as new information becomes available. 

1.3 State of the Art 

Attempting to apply system reliability to current bridge applications 

crosses many areas of current research. The current state of reliability theory, 

uncertainty modeling, deterioration research, and bridge inspection progress 

provided both the means and the barriers to conducting this study. The 

progress in reliability theory and the availability of uncertainty data on many 

relevant random variables made this research possible. The lack of agreement 

in the literature in areas such as deterioration models, live load models, and 

non-destructive evaluation testing makes any choice of model controversial and 

subject to criticism. In many cases, tests and models from the literature were 

used recognizing that they were not perfect and future research may invalid 

them.  Fortunately, the focus of this research is the methodology, so as new 



models and data are developed, they can replace the current models and data 

as modules without affecting the validity of the methodology. 

1.3.1   Reliability Theory 

With improvements in the size and speed of digital computers, the 

development of reliability theory and applications has increased exponentially 

over the past two decades. Component reliability has developed to an ad- 

vanced level where many computer programs and techniques exist to estimate 

the reliability of a single component of a structure. Reliability as it applies 

to the entire structural system is less developed. For example, if the steel 

reinforcement within a concrete beam is deteriorating, it is relatively straight- 

forward to calculate the probability of failure of that beam with respect to 

moment capacity providing one knows the uncertainty and correlation associ- 

ated with the input variables. It is more difficult to assess the probability of 

failure with respect to the bridge's overall ability to carry traffic because of 

the deterioration of the reinforcing steel in one beam. 

Relatively few system reliability computer programs exist and many 

of them rely on Monte Carlo simulation. Monte Carlo simulation, while ac- 

curate, is too time consuming for this study. Since non-Monte Carlo system 

reliability software was not available, a crucial step in this study was to either 

procure or develop such a program. 

As structural reliability theory has progressed, it has been widely ac- 

cepted among researchers and increasingly acknowledged among practicing en- 
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gineers. Modern design codes (AASHTO LRFD Bridge Design Specifications, 

Ontario Bridge Design Code, LRFD Steel Design) are increasingly based on 

reliability techniques. Reliability-based research is progressing from hypothet- 

ical structures toward real-world applications where realistic data is needed to 

support the studies. 

1.3.2   Random Variables 

Many of the random variables needed for the reliability analysis of a 

highway bridge have been extensively studied. The literature provided many 

sources which offered the probabilistic parameters (i.e., mean, coefficient of 

variation) associated with such variables as the yield strength of steel, concrete 

cover, and the thickness of asphalt layers. Some studies even assess the model 

uncertainty associated with applying a theoretical equation to a real situation. 

The challenge was deciding which study to use. The sources used for all 

random variables are clearly indicated throughout this study. 

A number of studies have been completed on modeling the uncer- 

tainty of the live loads on highway bridges, mostly as a result of weigh-in 

motion studies. By combining these truck traffic studies with extreme value 

statistics, it is possible to model the effects of increased maximum live load 

over time. 

Much research has been conducted into the deterioration of bridge 

structures over time due to corrosion of steel members, fatigue, and penetra- 

tion of chlorides in concrete. Some studies such as the deterioration of concrete 
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decks due to chloride penetration by Thoft-Christensen et al. [1997] attempt 

to understand the deterioration mechanism and assess the uncertainty in the 

random variables associated with the process. Other studies such as the Al- 

brecht and Naeemi [1984] corrosion study make no attempt to understand the 

process, but rather observe performance over time and perform a regression 

analysis to develop the model. Deterioration functions which do not model the 

process are less desirable in system reliability studies. The only random vari- 

ables are time and the regression parameters which will be difficult to correlate 

with other random variables in the system. Unfortunately, the deterioration 

process is often not well enough understood to accurately model it. 

1.3.3   Bridge Inspection and Bridge Management 

Numerous advances have been made in bridge management systems 

over the past two decades. The federal government has mandated that bridge 

inspections occur every two years and has developed a National Bridge Inven- 

tory data base from the results of reported inspections. Many studies have 

used this data base to develop models of how bridge systems and subsystems 

deteriorate over time. 

The 1991 Intermodal Surface Transportation Efficiency Act (ISTEA) 

required state transportation departments to implement bridge management 

systems to more efficiently plan maintenance, monitor the condition of bridges 

and allocate resources. The PONTIS Bridge Management System has been 

adopted by several states and uses Markov chains to predict future condition 
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ratings of a bridge. The data for the PONTIS system comes from visual in- 

spections. Under the current system, it is not possible to update the load 

rating of a bridge using PONTIS inspection data, although Renn [1995] sug- 

gests a way to do this. No studies were found which update the reliability of 

a bridge based on PONTIS inspection data. 

If the reliability of a bridge is to be updated from a visual inspection, 

the condition states have to be very well defined, preferably with numerically 

quantifiable ratings such as percent section loss or size of cracks. The Col- 

orado Department of Transportation has attempted this by supplementing 

the PONTIS inspection guides. 

There are numerous non-destructive evaluation (NDE) tests available 

to detect specific defects. In some cases, there are multiple tests available for 

the same defect and their results are taken in combination to assess condition. 

Some tests are well established and new tests are being investigated all of the 

time. This study attempts to focus on NDE tests which will measure the 

section loss due to corrosion in steel girders, the initiation of corrosion in a 

concrete deck, and the rate of corrosion in the steel reinforcement once the 

corrosion starts. 

Case studies and data from a specific structure or a laboratory study 

are common for most tests. Studies which provide a global probabilistic as- 

sessment of a particular technique are much less common. The case studies are 

often site-specific and are contradicted by other studies. The development of 

the probabilistic detection capability of the half-cell potential test by Marshall 



[1996] was particularly helpful. 

1.4   Benefits of the Study 

1. A potentially useful reliability-based optimization method for the 

inspection and repair of highway bridges is introduced. As reliability theory 

gains greater prominence, there will be an even larger need for practical meth- 

ods to apply it. Even if the methodology is not immediately adopted by a 

transportation department, it will hopefully contribute ideas and logic to a 

method that is eventually adopted and used. 

2. A non-Monte Carlo system reliability program is added to the 

computer software library at the University of Colorado. 

3. The National Science Foundation sponsored a workshop in Boul- 

der, Colorado, on Structural Reliability in Bridge Engineering in October 1996. 

This was one of the first events where researchers and practicing engineers to- 

gether discussed the advances and research needs in structural reliability. In 

the final workshop report to the National Science Foundation [1997], high 

priority research needs included reliability-based optimization, modeling of 

uncertainties, limit state definitions, systems reliability, target reliability lev- 

els, expected life-cycle costs, bridge resistance and load models, human issues, 

time dependency, deterioration models, bridge networks, maintaining relia- 

bility, non-destructive testing, performance forecasting, and support for new 

codes. This study addresses many of those listed areas. 

4. In a study of this breadth, a number of decisions and compromises 



10 

had to be made. To develop and update an optimum inspection and repair 

strategy, choices must be made regarding uncertainties in random variables, 

live load and deterioration models, costs, repair options, inspection methods, 

reliability method, and system modeling of the bridge. All of the decisions 

regarding these important topics are potentially controversial. The reasoning 

behind all of these decisions will contribute to the debate. 

1.5   Limitations of the Study 

1. Inspection and repair of highway bridges requires analysis of exist- 

ing structures. Revising the design of new bridges to optimize their inspection 

and repair is much more complex and beyond the scope of this study. This lim- 

its the availability of replacement options as bridge components are replaced 

with what was originally designed. In reality, bridge managers often use repair 

situations as an opportunity to upgrade or improve a design. 

2. Throughout this thesis, a minimum system reliability is pre- 

scribed, usually ßmin = 2.0, and the deteriorating structure is not allowed 

to fall below that value. The minimum system reliability is a measure of ac- 

ceptable risk. Frangopol and Moses [1994] illustrated how an optimum degree 

of risk can be found by minimizing the total cost of a structure as shown in 

Fig. 1.1. 

The total cost was defined as the initial cost of the structure which 

decreases as the acceptable risk increases plus the failure cost which increases 

as the acceptable risk increases.   The failure cost is equal to the cumulative 
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Figure 1.1:    Total Cost,  Failure Cost,  and Initial Cost Versus 

Reliability 

cost of failure in terms of loss of life, reconstruction, traffic delay and rerouting, 

lawsuits, increased government regulation, and loss of good will multiplied by 

the probability of occurrence. The minimum total expected cost would define 

the optimal acceptable risk (i.e., optimal lifetime reliability level). 

This study does not attempt to quantify the failure cost of the bridge 

which would depend on a number of factors such as the predicted loss of 

life associated with a particular failure mechanism, the importance of the 

bridge in the overall traffic network, the detour length, the traffic volume, 

etc. While research in the area of failure costs exists, the attempt to quantify 
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the failure costs associated with a particular bridge could comprise an entire 

thesis in itself. This study chooses an arbitrary minimum system reliability 

index assuming that it adequately reflects acceptable risk. The Report to the 

National Science Foundation [1997] listed target reliability levels and failure 

costs as areas which require further research. 

The question of costs is not trivial as the availability of scarce funds 

which must be allocated efficiently to the entire system of bridges may affect 

the ability to maintain a specified safety level in a particular bridge. The 

situation becomes more complex as the opportunity cost of using available 

funds on bridge repair must be weighed against the benefits of spending the 

money on national defense, foreign aid, education or medical research. Include 

political considerations and the problem becomes even more intractable. This 

thesis focuses only on minimizing the cost of maintaining a prescribed level of 

safety in a bridge. It does not address whether these funds are available or 

whether they could be better spent on some other activity. 

3. This study is restricted to repairs based on deterioration of the 

bridge. It is estimated that over 35% of all highway bridges are either struc- 

turally deficient or functionally obsolete and that over $78 billion is needed 

to correct the defects [FHWA 1993]. Many of these defects, however, involve 

safety concerns such as deck width, sight distance, excessive curvature, or ver- 

tical clearance. While very important, such issues are not associated with 

deterioration and will not be considered. Likewise, those rehabilitations which 

address vulnerability issues such as seismic retrofit, collision, and fracture crit- 
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ical situations are neglected. 

4. The deterioration models used in this study are not specific to 

the State of Colorado. The Albrecht and Naeemi [1984] corrosion model used 

for the bridge girders was developed from bridges throughout Europe and the 

United States. Furthermore, the corrosion model does not account for the 

protection provided by the paint on the steel girders. The Thoft-Christensen 

et al. [1997] model for chloride penetration and corrosion of steel reinforcement 

in the slab was based on concrete decks in Denmark and the United Kingdom. 

Since the purpose of this study is to illustrate a methodology, the lack of a 

deterioration model specific to Colorado bridges is not a serious limitation. In 

addition, the updating process illustrates how a general deterioration model 

can be revised to accommodate specific site inspection results. 

5. In developing limit state equations for failure modes on a selected 

bridge, this study uses the same equations as those used by the Colorado 

Department of Transportation when computing a load rating for the same 

bridge. The intent is to compare the system reliability index with the bridge 

load rating and to use equations that are already generally accepted by the 

agency charged with managing the Colorado bridges. The load rating soft- 

ware, Bridge Analysis and Rating System (BARS), is based on the AASHTO 

[1992] design specifications. Although an LRFD-based AASHTO [1994a] spec- 

ification is available, it has not yet been incorporated into the load rating of 

Colorado bridges. Some of the limit state equations used in this thesis are 

therefore based on the AASHTO [1992] specifications. Similarly, no 3-D finite 
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element analysis was performed on the highway bridge, just as no such analysis 

is usually performed on a typical highway bridge. 

6. This study ignores the interaction between failure modes. For 

example, if a girder fails, the slab must span a greater distance between girders. 

If a roller bearing collects debris and will not rotate, these girders are subjected 

to additional stresses. These effects are not considered. 

7. Under existing bridge management systems, it is not possible to 

update the reliability of a bridge using the results of a visual inspection. This 

study demonstrates how it could be done based on using a segment-based 

inspection, rewriting the condition state definition, defining the distribution 

of the condition state, and quantifying the subjective uncertainty associated 

with the inspector's assessments. There is a lack of available research in some 

of these areas. This study illustrates how the reliability could be updated if the 

research was available. As a result, the numerical quantities used to redefine 

the condition states, define the condition state distributions, and quantify the 

inspector uncertainty were hypothetical. 

8. There is limited inspection data available on Bridge E-17-AH, the 

highway bridge used in this study. Several PONTIS inspection reports were 

readily available, but some of the NDE tests recommended in this study were 

not conducted on this bridge. There is no record of a weigh-in-motion study, 

half-cell potential test, 3-electrode linear polarization, or a test of girder flange 

thickness being conducted on this bridge. The first priority in this study is 

to use actual data from Bridge E-17-AH whenever it is available.  The next 
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alternative was to use actual data from a similar bridge and apply it to the 

bridge in question. Only as a last resort was a hypothetical inspection result 

developed based on general findings or trends found in the literature. 

Specifically, in this study, the three-electrode linear polarization (3LP) 

test data was taken directly from a deck structure in the northeastern United 

States [Clear 1992]. The 3LP method is relatively new, but is the only available 

method for measuring the rate of corrosion in reinforcing steel embedded in 

concrete. Using the 3LP method in the field requires a number of assumptions, 

some of which are debatable. The hypothetical half-cell potential test results 

on the deck were based on results from corrosion studies on bridge decks in 

Kansas [Crumpton and Bukovatz 1974]. Finally, the girder thickness results 

were purely hypothetical based generally on trends observed from the visual 

inspection and the Albrecht and Naeemi [1984] corrosion model. Although the 

inspections were not conducted on the bridge under investigation, inspection 

results over time were needed to fully and completely illustrate the updating 

process. 

9. This study neglects uncertainty associated with human error in 

design, construction, or testing. It suggests a method of incorporating inspec- 

tor error into the assessment of visual inspection data, but otherwise neglects 

human error. 

1.6   Organization of the Thesis 

Chapter 1 serves as an introduction to the research conducted in 
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this thesis. 

Chapter 2 develops a model to optimize the inspection of very sim- 

ple single component, series, and parallel structures which deteriorate over 

time. Four sample inspection techniques are offered. The optimization pro- 

gram ADS is linked with the reliability program RELTRAN to optimize the 

timing, number, and method of inspection based on minimum cost and ex- 

pected life. 

Chapter 3 presents a system reliability program, RELSYS, devel- 

oped in this study which calculates the system reliability of any structure 

which can be expressed as a series and parallel combination of components. 

The algorithm and accompanying theory for the first-order, second-moment 

component and system reliability are described and illustrated with numerical 

examples. The results of the program are compared with two Monte Carlo 

simulation programs. The resulting strengths and limitations of the program 

are discussed. The User's Manual for RELSYS is in Appendix A. A detailed 

description of RELSYS to include flow chart, listing of variables, and subrou- 

tine descriptions is presented in Appendix B. 

Chapter 4 develops a minimum cost repair strategy for systems of 

components. A minimum allowable system reliability is established based on 

the maximum assumable risk allowed over the life of the structure. Inspections 

occur every two years as the structure deteriorates over time. The structure 

must be repaired whenever the system reliability index falls below the pre- 

scribed minimum. Individual components are repaired based on whether they 
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are above or below a component threshold reliability level at the time of in- 

spection. This threshold reliability level is varied until an optimum lifetime 

repair strategy is developed. The model is applied to a statically determinate 

five-bar truss (series system) and a three-bar statically indeterminate truss 

(series-parallel system) using a hypothetical deterioration model and cost data. 

Chapter 5 applies the methodology described in Chapters 3 and 4 

to Colorado State Highway Bridge E-17-AH. Using 24 separate random vari- 

ables and 16 different failure modes, the reliability of each bridge component 

is computed. The bridge is modeled as a series-parallel combination of the 

individual failure modes and the system reliability is computed. The system 

reliability is compared to the bridge load rating and a sensitivity analysis with 

respect to all random variables is performed. 

The reliability of the structure decreases over time as the maximum 

live load increases and the bridge deteriorates. The bridge girders are subject 

to corrosion and the concrete bridge deck and pier cap are subject to chloride 

penetration and subsequent corrosion of the steel reinforcement. The bridge 

is repaired any time the system reliability index falls below the prescribed 

minimum value. Five distinct repair options and their associated costs are 

considered. All feasible combinations of these options are investigated until 

an optimum repair strategy is developed. Since the system reliability model 

is strength-based, the concept of serviceability flags is introduced to handle 

relevant failure modes not based on strength. 

Chapter 6 uses biennial visual inspections and selected NDE tests to 



18 

update the optimum repair strategy for Bridge E-17-AH. The original lifetime 

repair strategy is developed based on theoretical models when the bridge is 

placed in service. The updated repair strategy is based on actual structural 

performance as determined by inspection results. Future performance is then 

extrapolated from the inspection trends. 

The actual PONTIS bridge inspections are used to update the ser- 

viceability flags and future performance of the bridge is predicted based on as- 

sumed linear condition-state deterioration. A segment-based inspection tech- 

nique is introduced to allow PONTIS inspection results to update bridge reli- 

ability. With several key assumptions regarding condition state deterioration 

and the quality of the inspection program, the reliability of some components 

of Bridge E-17-AH is updated. 

Finally, three NDE tests are proposed which allow the reliability of 

the bridge to be updated - although these tests were never actually conducted 

on the bridge. Measuring the flange thickness on the girders allows the actual 

corrosion of the girders to be assessed. The half-cell potential test provides 

data on the chloride initiation time and the three-electrode linear polarization 

test provides a reinforcement corrosion rate. It is demonstrated how the results 

of a particular inspection can be used to update the reliability and the results 

at several points in time can establish a trend and predict future performance. 

Based on these hypothetical test results, an updated optimum repair strategy 

for Bridge E-17-AH is developed. 

Once the relevant NDE tests have been identified, Chapter 7 applies 
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the inspection optimization methodology introduced in Chapter 2 to the con- 

crete bridge deck from Bridge E-17-AH using the half-cell potential method. 

The uncertainty of the half-cell method is addressed relative to the quality of 

the equipment, the correlation between potential readings and the existence 

of active corrosion, and the ability to assess the condition of the entire deck 

based on a series of half-cell readings. Failure of the deck is defined as active 

corrosion occurring in at least 50% of the deck area. Three different inspection 

techniques based on different spacings of readings and their costs are intro- 

duced. Four approaches to repair (delayed, linear, proactive, idealized) are 

considered. 

Using the same event tree methodology introduced in Chapter 2, 

the optimum number and timing of lifetime inspections is developed based 

on the expected life of the concrete deck. As repair decisions are made, the 

optimum inspection plan is updated. This is illustrated with an example which 

consistently follows the most likely path on the event tree. The effects on the 

optimum strategy of varying the discount rate, repair approach, repair policy, 

expected life, and the deterioration model are all examined. 

Chapter 8 presents conclusions and recommendations for future 

research. 

1.7   Units 

While the original intent of this thesis was to use S.I. (metric) units, 

it became unfeasible to do so.   Virtually all sources used for the practical 
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applications were in English units. The design equations, the blueprints for 

the bridge, the BARS load rating output, and the PONTIS inspection data 

were all in English units. As a result, the constants in the component limit 

state equations are based on English units. It would be misleading and difficult 

for any future researcher looking to follow or verify this study if S.I. units were 

used. The convention used in this thesis is to present all material in English 

units with S.I units in parenthesis wherever practicable. 



CHAPTER II 

INSPECTION OPTIMIZATION 

2.1   Overview and Objectives 

Any structure which is deteriorating over time may need to be re- 

paired at some point during its lifetime. The needed repair will only be made 

if the relevant defect is detected. This requires that the structure be inspected 

and evaluated. There are different types of inspections that may be performed. 

The Federal Highway Administration requires that highway bridges 

be inspected every two years [Tonias 1995] by a certified bridge inspector, not 

necessarily a licensed professional engineer. In many cases, the biannual in- 

spection is visual and reports the general condition of the bridge in terms of 

degree of spalling on the deck, exposed reinforcing bars, condition of bear- 

ings, etc. This type of inspection is practical and worthwhile because it is 

inexpensive, does not require much time, and the inspector does not need 

design expertise or an engineering degree. Examining every bridge for obvi- 

ous hazardous situations and maintaining a record over time for each bridge 

is good public policy especially toward maintaining public confidence in the 

performance of these structures. 

Some states supplement these two year inspections with a five year 

inspection by a professional engineer competent to address design performance 
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and strengthening measures [Tonias 1995]. While most inspection information 

on bridges comes from these inspections, specialized tests may be required to 

detect defects that cannot be seen visually. 

Often there are a variety of inspection methods from which to choose 

for a particular defect. Testing for adequate concrete cover, for example, can be 

done with a pachometer which locates reinforcing steel from a magnetic field or 

other methods such as ultrasound are available. For other defects, inspection 

methods could include acoustic, ultrasonic, electrical, infrared, thermographic, 

radar, and nuclear methods [AASHTO,1994a]. All methods have associated 

costs and detection capabilities. The decision concerning which inspection 

method to use and when in the life of the structure it should be employed is 

worthy of study. 

This chapter is based on an optimization approach suggested by 

Thoft-Christensen and S(/>rensen [1987], Thoft-Christensen [1987], and S</>rensen 

and Faber [1991]. The approach is significantly modified in this study to op- 

timize the timing and method of inspection over the life of a structure. The 

method is illustrated on each of the simplest possible single component, series, 

and parallel structures and the results are analyzed. 

2.2   Description of the Problem: Single Component Sys- 
tem 

The structure to be analyzed is a single bar with a constant cross- 

section subjected to a centric axial load as shown in Figure 2.1. The resistance 
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(R) and load (P) are normally distributed random variables while the cross- 

sectional area (A) is deterministic. The initial values for these variables are: 

Resistance (R): /J,R = 14.0; aR = 1.4 

Load (P): fiP = 8.0; aP = 0.8 

Area (A): Ainit = 1.0 

where \xx and ax are the mean and standard deviation of X, respectively, and 

Ainit is the initial (undamaged) cross-sectional area. 

A(t) 

Area 

L(t) L(t) 

Figure 2.1:    Single Component Structure Subjected to Centric 

Axial Load and Section Loss Due to Deterioration 

The structure will fail if: 
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R-P/A<0 (2.1) 

To understand and analyze the model, it is necessary to modify these 

variables to create different structures. In developing new structures, the mean 

(ßR) and the standard deviation (aR) of the resistance were changed to simplify 

understanding. The coefficient of variation 5R = 0.10 remained the same 

throughout. In charts and graphs, where the resistance (R) of a structure is 

listed, it is in fact referring to nR because the resistance is a random variable. 

The probability of failure of the structure is expressed through the 

reliability index (ß) which is discussed more fully in the next chapter. In 

relation to the probability of failure of the structure, Pf = $(—ß) where $ is 

the distribution function of the standard normal variate. A higher value of ß 

represents a lower probability of failure of the structure. This reliability index 

was calculated using the program RELTRAN (RELiability TRANsformation) 

[Lee et al. 1993]. 

Given the structure described in Fig. 2.1, the goal is to develop an 

inspection strategy that will minimize total cost of the inspection and repair 

and prevent the structure from deteriorating to an unacceptable level of relia- 

bility at any point during the usable life of the structure. The expected useful 

life of this structure is 10 years and the reliability index will not be permitted 

to fall below ß = 2.0. There will be two, three, or four inspections allocated 

over the life of the structure. The design variables are the times and qualities 

of the inspections. 
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It is difficult to directly optimize the number of inspections (n) be- 

cause the number of design variables depends on the number of lifetime in- 

spections. The number of inspections is an integer quantity. Mixing real and 

integer design variables complicates the optimization problem considerably. 

The most practical option is to work the problem for discrete values of n and 

compare the results. 

2.2.1 Deterioration Model 

The structure is deteriorating over time resulting in loss of cross- 

sectional area as shown in Fig. 2.1. The expected thickness loss is expressed 

as: 

L(t) = DtB (2.2) 

where: L(t) = average thickness loss over time; t = time (years); and D,B = 

deterioration parameters. The area of the structure at any time, t, is: 

A{t) = Ainit - 2.0L(t) = Ainit - 2.0(0.051t0'57) (2.3) 

The deterioration of the structure over time assuming that no repairs are made 

is shown in Figure 2.2. There is a rapid exponential decrease in area where 

only half the original area remains after approximately 17 years. 

2.2.2 Inspection Methods 

If a fault in a structure exists, there is no guarantee that a given 

inspection will find it. A higher quality inspection is more likely to discover an 

existing defect but it will also result in a greater cost. In reality, the availability 
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Figure 2.2: Deterioration of Cross-Sectional Area Over Time 

of inspection techniques or qualities is not a continuous function but rather 

a series of discrete techniques which are available to detect a specific defect. 

The techniques vary in cost and detection ability. This example considers four 

such hypothetical techniques. 

The qualities of all four techniques are random variables which have 

some uncertainty associated with their detection abilities. The quality of each 

inspection is assumed to be normally distributed although it could realisti- 

cally take any distribution. The ability of these methods to detect damage is 

based on the intensity of the structural damage. Mori and Ellingwood [1994] 
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described the degree of damage using a damage intensity factor r\str defined 

as: 

Vstr = (Ainu - A(t))/Ainit (2.4) 

where A(t) is the deteriorated cross-sectional area at any time t. The value 

ranges from 77 = 0, which indicates no damage, to a value of 77 = 1, which 

indicates that the element no longer exists. 

The parameters which describe the four techniques used here are 

shown in Table 2.1 where: 

770.5 = damage intensity at which there is a 50-50 chance of detection; 

o'insp = standard deviation of the detection ability of the inspection; 

Vmin = damage intensity below which detection is impossible; and 

Vmax = damage intensity above which detection is absolutely certain. 

Table 2.1: Parameters Associated With Four Inspection Techniques 

Technique m.a &insp Vmin Vmax Inspection Cost 

A 0.05 .005 .035 .065 1.5 

B 0.1 0.01 0.07 0.13 1.0 

C 0.2 0.04 0.08 0.32 .75 

D 0.3 0.03 0.21 0.39 .50 

As suggested by Lin [1995], the minimum and maximum intensity 
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values are calculated as three standard deviations above and below the mean: 

Vmin     =     VO-5 - 3.0<7,nSp (2.5) 

Vmax    =    %5 + 3.0ainsp (2.6) 

The probability of a defect being detected (Pdet) at any time t is dependent 

on the damage intensity of the structure rjstr at the time of the inspection and 

the inspection technique being employed: 

Pdet = $((Vstr - V0.ü)/crinsp) (2.7) 

The probability density function of each technique and the shape of 

it cumulative distribution function are shown in Figure 2.3. This approach 

is applicable to real world problems if the data on the relevant inspection 

technique can be gathered and its distribution approximated. 

2.2.3   Probability of Repair 

To optimize the timing of a limited number of available inspections, 

the inspection should be made when (1) there is a high probability that a 

repair will be needed but (2) before the defect has been allowed to progress 

to where the safety constraints of the structure are violated. It is necessary, 

therefore, to calculate the probability of making a repair, assuming the defect 

is detected. 

Repairs on structures are often determined by a repair policy devel- 

oped by the engineer charged with maintaining the structure. A reliability- 

based repair policy might be that the structure is repaired when ß = 3.0 or 
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ß = 2.5. The probability of repair can be based on the adherence to the repair 

policy. A proactive manager may repair the structure early. More likely, a 

competition for scarce maintenance funds may force the repairs to be made 

later, after the policy has been violated. Clearly, as the deterioration of a 

structure increases and its reliability decreases, the likelihood that it will be 

repaired increases. 

The probability of making a repair in this example is based on the 

difference between the original reliability and the constrained minimum allow- 

able reliability of the structure. If a defect has been detected, the probability 

of making the repair (Prep) is calculated as: 

p 1 rep 

0.0 for    ßstr(t) > ßinü 

(ßinit - ßstr(t))/{ßinü ~ ßmin)        for       ßmin < ßstr{t) < ßinü      (2"8) 

1.0 for       ßstr(t) < ßmin 

where: 

ßinü = reliability index of structure when placed in service; 

ßstrit) = reliability index of structure at time t; and 

ßmin = minimum acceptable reliability index of structure. 

The range of probabilities will range from Prep = 0 when the structure 

is in its original state or when a complete repair has been made to Prep = 1.0 

when the minimum reliability index of the structure is reached. The inherent 

assumption is that a repair will return a structure to its original reliability 
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state. This assumption could easily be modified to return a structure to some 

specified percentage of its original reliability after a repair. That specified 

percentage could even decrease over time indicating the difficulty of returning 

an old bridge to its original state. 

After an inspection, a decision regarding whether or not to repair the 

structure based on the degree of damage that was detected in the inspection 

must be made. As the number of inspections increases, the number of decision 

paths increases by 2n where n is the number of inspections [Lin 1995]. The 

probability of taking any path or branch (Pb) is equal to: 

n 

n = n psuh (2.9) 
1=1 

where Psubi is the probability of taking any sub-branch along the path.  The 

probability of taking a sub-branch which involves making a repair (R+) is 

equal to 

-'suftij+ 
= idet* rep ^Z.IUJ 

which using conditional probability accounts for both the damage intensity and 

the ability of the chosen inspection technique to detect the damage, where P^t 

and Prep are given by Eqs. 2.7 and 2.8, respectively. Similarly, the probability 

of taking any sub-branch where a repair is not made (R~) is equal to 

PsubR-  = 1 — PsubR+ (2-11) 

2.2.4   Cost of Repair 
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Realistically, a repair which is made after a greater period of time 

when more deterioration has occurred should be more expensive than a repair 

made when the deterioration is minor. Even the most minor repair has a fixed 

cost associated which might include the salary of the workers, the transporta- 

tion to the site, and destruction/repair associated with getting to the damaged 

area, such as chipping away concrete to get to the corroded rebar. 

In this example, the cost of repair is assumed to be equal to the sum 

of a fixed cost Cfix which occurs every time a repair is made (i.e., planning, 

getting to the site, exposing the element) and a variable cost Cvar which de- 

pends on the degree of damage (i.e, the amount of material that needs to be 

replaced). 

^rep — ^fix   i   ^var yZ.iZj 

where Cßx = 5.0 and Cvar = 5.0 rjrep. 

2.2.5   Single Component System: Two Lifetime Inspec- 
tions 

The total cost associated with the inspection program (Ctot) is equal 

to: 
n m 

Ctot = 2^ CinSp + 2_^ Crep (2.13) 

where n = number of lifetime inspections, and m < n is the number of lifetime 

repairs. It is this total cost that will be minimized to optimize the timing 

and method of inspection. For the case of the single component structure in 

Fig. 2.1, the optimization problem can be formulated as: 
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Minimize: Ctot 

such that: 

ßh     >     ßmin = 2.0 (2.14) 

ßt2     >     ßmin = 2.0 (2.15) 

PlO years     >     ßmin = 2.0 (2-16) 

0.5   <   h< 7.0 (2.17) 

0.5   <   <2-<i<7.0 (2.18) 

h   <   10.0 (2.19) 

where t\ and t2 are the times (in years) that the two inspections will be con- 

ducted. Eqns. 2.14 through 2.16 ensure that the reliability of the structure 

never falls below the minimum allowable reliability level (ßmin — 2.0). This 

is accomplished by checking the reliability at the two inspection times and 

at the end of the useful life of the structure. Eqns. 2.17 and 2.18 ensure the 

inspections are at least six months apart but not more than seven years apart. 

At time £x, a decision must be made whether or not to repair the 

structure based on the damage reported by the inspection as indicated by 

Eqn. 2.10. Let Rf indicate that a repair was made at time, t\, and R[ indicate 

that a repair was not made. Similarly, at time i2, a decision must again be 

made whether or not to repair the structure where R% indicates repair and AT 

indicates no repair. The decision at time, t2, must account for whether repairs 

were or were not made at time ti. Fig. 2.4 illustrates these possibilities. 

At time, ti, there are two options: 
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a) Repair at time, t\ (branch 1: Rf) 

Phi    —   P{R\)    —   PdehPrepi (2.20) 

b) No repair at time, t\ (branch 2: 7?j~) 

pb3 = p(i?r) = i-n, (2.2i) 

where: 

Pbj = the probability of taking branch 1; 

Pdeh = ^((Vi — Vo^/vinsp) = the probability of detection of the damage at 

time, t\\ 

Prepi = (ßinit - ßoxi)/(ßinit- ßmin) = the probability that a repair will be made 

if the defect is detected at time, ti, 

ßoi = ßti = the reliability index of the structure at time, t\; and 

fji = the damage intensity of the structure at time, t\. 

At time, t2, the four considerations are: 

a) Repair at time t2, if a repair was made at t\ (branch 3: Rf f] Rf) 

Ph   =  P(B+f]R+)  =  PblPsuha (2.22) 

where: 

Psub3a — Pdet2aPrep2a — probability of making the repair Rf, given that a re- 

pair was made at time tx. Referring to Fig. 2.4, note that 2a identifies actions 

at time i2 given that the previous repair was made at time t\. Similarly, 26 

identifies the actions at time i2, given that the previous repair was at to. In 
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addition 

Pdet2a  = $((%a - m.h)IOin8p)\ 

Prepia  =  {Pinit ~ ßl2)/{ßinit ~ ßmin)] &nd 

ß\i = ßt2a ~ the reliability index of the structure at time, t2 where last repair 

was made at t\. 

b) No repair at t2, if a repair was made at t\ (branch 4: Rf f| R2 ) 

Pbi  = P(Rtf]R2)  = PblPsuhb (2.23) 

where: Psuhb = 1 - Psuha 

c) Repair at £2, if no repair was made at t\ (branch 5: R{ fl Rt) 

A,   =  P(R^f)Rt)  = Pb2Psub3c (2-24) 

wnere: rsubzc 
= linspibfzpib 

d) No repair at £2, if no repair was made at t\ (branch 6: R~{ f| R2 ) 

A6  =  P(Rif]^)   =  PhPsuhd (2.25) 

where: Psuhd = 1 -Psu63c. 

The reliability of the structure must be evaluated at times t\, i2, 

and tio years to ensure that the minimum reliability constraint is not violated. 

To calculate the probability of failure of the structure after these inspections, 
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the weighted effect of each of the repair paths must be considered. For each 

branch 6j, the probability of failure of the structure at a point in time given 

that bi was taken (i.e., Pf(t)\bi) is multiplied by the probability ofthat branch 

being taken, Pb.. The total probability of failure is equal to the sum over all 

branches. The reliability index, /?, at any time t can be expressed as: 

where n = number of lifetime inspections. 

At time t\, the reliability index ß\ is calculated directly from the 

reduction in section area since no decisions concerning repair have been made 

yet and there are no branches to consider. At t2, either branch 1 (Rf) or 

branch 2 (Ri) has already been chosen. The reliability index fa is therefore: 

fa   =   -$-1(*(-/?(t2-t1))P(Ä+) + $(-j9(t2))P(ÄT)) 

=   -$-lm-ßi2)Pbl+$(-ßo2)Pb.2) (2.27) 

Likewise, at time tw years, the useful life of the structure, either branch 3 

(Rf n R2), branch 4 (Rf f] R£), branch 5 (fir fl *#), or branch 6 (Äf fl R2) 

has been chosen. The reliability index ßw years is: 

ßW years     =     ~$_1($("ß(tW years ~ t2))P(Rf f| B}) 

+ $(-/?(t10 years - tl))P(R[ f] R2) 

+ $(-/?(*!„ years ~ t2))P(R^ f] R+) 

+ $(-ß(ho years)) * P(RI f)R2)) 

= -$-i[$(-/523)n3 + $(-/?13)n4 
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+$(-/?23)P65 + $(-A)3)n6] (2.28) 

The cost of repair associated with each branch Cr is different since 

branch 3 requires two repairs, branches 4 and 5 require one repair, and branch 

6 involves no repairs. The cost of repair calculation becomes: 

2n 

CreP = T,Cr(rl)Pbi (2.29) 

where: 

Cr = the cost of a repair on a branch which is a function of the fixed and 

variable cost as described in Eqn. 2.12; and r, = number of repairs required 

in branch i. 

The cost of repair for this two-inspection, single-component example 

is: 

Cfea = Pbi(2(Cfix) + Cvar(T]i + T)2a)) 

Cbi = PbA (1 (Cfix) + Cvar Tji) 

Cfe5 
= Pb5{l{Cfix) + CvarT]2b) 

Cb6 = 0 

Crep   =   Cf,3 + Cb4 + Cf,6 + C(,6 

^tot     —     ^y^insp) "T ^rep 

2.2.6   Single Component  System - Four Lifetime In- 
spections 
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The formulation of the problem for the single component system 

which has four inspections over its lifetime is listed below. By examining 

the solution to the four inspection problem, the three inspection problem will 

become apparent. 

Minimize: Ctot 

such that: 

ßh > ßmin = 2.0 

ßt2 > ßmin = 2.0 

ßt3 > ßmin = 2.0 

ßu > ßmin = 2.0 

PlO years _ Pmin — ^-U 

0.5 < ti< 7.0 

0.5 < t2-h< 7.0 

0.5 < t3-t2< 7.0 

0.5 < t4-t3< 7.0 

U < 10.0 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

As the number of inspections increase, the number of possibilities 

increase as shown in Fig. 2.5. At time t4, there are 16 possible branches of 

repair to consider. 

The notation can easily become complex and is consistent with the 

two inspection case. Every possible time interval between inspections is iden- 
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tified and notation which describes the probability of failure and the reliability 

index over these intervals is developed. Also, the damage intensity 77 must be 

tracked over every time interval. 

Let: 

ph =      $( -ß(tl))   =  *(" -An)         V = Vi 

Pha =       $( -ß(t2 - k)) = '- *(-Ä2)        V = V2a 

Pflb =       $( -ß(t2)) = *(- -ßm)         V = V2b 

Pha =       $( -ß(h-h)) = -- $(-ß23)       V = V3a 

Phb =       $( -ß{h - h)) = -- ^(-ßu)      V = Vsb 

Phc =       $( -ß{h)) = H- -ßos)            V = T]3c 

PUa =       $( -ß{U -13)) = -- $(-Ä4)        V = V4a 

Phb =       $( -ß{U - h)) = -- $(-AM)      V = Vlb 

Phc =       $( -ß(U - h)) = -- $(-ßU)        r\ = T]4c 

Phd =       $( -ß{u)) = *(- -AM)         r) = r)4d 

Pha =       $( -ß(h -14)) = ~- $(-Ä5)        V = V5a 

Phb =       $( -ß(h - k)) = -- $(-/Ö35)     V = V5b 

Phc =       $( -ß{h-h)) = -- *(-/?25)        V = VSc 

fbd =       $( -ß(h - <i)) = '- $(-ßis)      V = V5d 

Phe =       $( -ß(h)) = *(- -ßos)             V = V5e 

Fig. 2.6 shows a time line which provides a pictorial description of 
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these values. Over each of these time periods, the damage intensity r\ is calcu- 

lated. From the damage and the quality of the inspection technique used, the 

probability of detection P^ti is calculated where i indicates variable subscripts 

which uniquely identify that particular inspection. Similarly, the probability 

of repair Prepi is calculated over every possible time period with the subscripts 

uniquely defining that specific repair. With these values, the probability of 

each branch and sub-branch as numbered in Fig. 2.5 can be calculated. 

For time t\\ 

Ph     =     P(R\ ) = PdehPrepi 

Ph2   =   P(R^) = 1-Pbl 

For time £?: 

*sub3a 
= Pdet-ia {■'■repxa ) 

*sub3b 
= ■!• — *sub3a 

*sub3c 
= *det2b\*rep2b) 

*sub3d 
= J- ~~ Psub3c 

Pb3 = PiRlDPt) = PbiPsubSa 

Pbi = P(R+f)R;) = PblPsuhb 

Ph = P(RTf]Rt) = Pb2PSub3c 

Pb6 = P(R^f)R;) = Pb2Psuhd 



For time £3: 
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sub4a ^detza *rep3a 

For time £4: 

p —     1        P x          1 sub/ta 

*SUb4e 
— P               P — 1 msp3e 

1 repze 

t^sub^f —     *■       *subie 

Pb7 =   P(Rtf]Rtf]Rf /           -* 63     ■S«b4a 

Pbs =   P(Rlf]Rtf]Rz 1  — *~03*.subib 

Pb9 =   P(Rlf)R;f)RJ '        •'64 ^subic 

Pb10 =   P(Rtf]^f]Rs '           ■'64 -*S«64<j 

An =   P(R;f)R}f)Rf \   p   p 
1           -r&5'rsub4a 

Pbv2 =   P(R;f)Rif)R^ —  -'fe-' «U&46 

Pb13 =   P(R;(]R;f)Rt: -"i&6 *subie 

PbM = p(#rn^n^-;     P,     P 
— rbsr sub^f 

* sub5a     —     *det4a *rep4a 

* sub* 1-P. subsa 

°5g *sub$a     —     *detid *repid 

*subbh     =     J- — -*su6s oSg 
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Pbl 

Pbl 

P 617 

Ph 

Pb,n     = big 

P b-20 

Pb-n 

P»-, 

Pb23 = 

Pb24 = 

Pb-25 = 

Pb26 = 

Pb27 = 

Pb2s = 

Pb29 — 

p   
-"630 ~~ 

pcR+n^+n^rw 
P(Rtf]Rtf]Rif]R, 

P(Rtf]Rtf]R^f]Rj 

P(Rlf]Rtf]R^f]R 

P(Rlf)R;f)Rjf)Rj 

P(Rlf}R;f)Rjf)R 

P(Rtf]R^f]R^f]Ri 

P(Rlf)R;f)R;f)R 

P(RTf)Rtf)Rjf)Rt 

P(R;f)Rlf)Rjf)R; 

P(RTf]RiC)R^f]Ri 

P(R^f]Rif]R^f]R^ 

P(RYf]R^f]Ptf]Pi 

P(Rlf)R;f)R;f}Rt 

) = Pb7 
p 
1  subsa 

) = Pb7 Psub5b 

') = Pbs *subsc 

) = Pbg Psub5d 

') = Pb9 Psubsa 

) = Pb9 Psubbb 

\ — P     P )          * bio1 Stlbse 

)       *bi0*subSf 

) = PbuPsub5a 

\    p     p 
) ~ rbnr sub5b 

\ — P     P 
)        J bv21 subsc 

) = PbivPsub6d 

) = *b13Psub5a 

) ~ ^biz^sub^ 

) = Pbu 1 *subsg 

) - Pbi, ^subsh 

Recalling Eqn. 2.26 for the reliability index at time t, the reliability index ß4 

at time t4 can be calculated using the notation above as: 

ä = -®-l[Pua(Pb7 + pb9 + Pbn + Pbj + PfjPbs + n„) 

+PhcPbio+PfidPbii] 
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and the reliability index ßi0 years at time tio vears can be calculated as: 

ßlO years     =     ~$   * [Pfsa (Pbl5 + Pbl7 + Pbl9 + A21 + A23 + A25 + P627 + A29) 

+PfJPb16 + PbM + Pb2i + PbJ + Pf5c(Pbli + PbJ 

+ PhdPb22   + PfcePbso] 

The cost of repair calculation includes fixed and variable costs which 

account for the damage intensity at every repair. The number of repairs varies 

because one branch offers 4 repairs, four branches offer 3 repairs, six branches 

offer 2 repairs, four branches offer 1 repair, and one branch has no repairs. 

Using Eqn. 2.29, the cost of repair calculation becomes: 

+ Cvar(T]i + T)2a + V3a +V4a)) 

+ Cvar(T]TL +V2a + r]3a)) 

+ Cvar{t]i + Tj2a + r)4b)) 

+ Cvar(r)i +T]2a)) 

+ Cvar(ril +V3b +V4a)) 

+ Cvar{ql + 773b)) 

+ Cvar(l]i +7]4c)) 

+ Cvar(r)i)) 

+ Cvar(rj2b + 7?3a + Via)) 

+ Cvar(r)2b + r)3a)) 

+ Cvar(r]2b + TJAb)) 

+ Cvar(r}2b)) 

Cfcis -   Ai5(
4(C/jX) 

C&16 =    Pbi6\3{Cfix) 

Cfcl7 =    Pbn{3\Cfix) 

C&18 —    Pbig(2{Cfix) 

cbl9 —   Pbi9{3(Cfix) 

Cb-20 ~     M>2o(2(C/i:r) 

cb2l =     Pb21\2\Cfix) 

Cb22 
=     Pb22\)-{Cfix) 

6&23 —    Pb23(3(Cfix) 

C&24 
=      Pb24\2{Cfix) 

C&25 
=       -n>25(2(Cfix) 

Cb26 =       Pb260-(CfiX) 
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Cb27 = Pb27(2(Cfix) + Cvar(V3c + V4a)) 

Cb-28 = Pb280-(Cfix) + Cvar(r)3c)) 

Cb-29 ~ A29 (1 (Cfix ) + Cvar (T]4d) ) 

C030 = 0 

30 

^rep     —      / y ^bi 
i=15 

C'tot     —     4(L7jnSp) + C, rep 

2.2.7   Program: Optimumlnspect 

The FORTRAN code which optimizes the timing of the inspections 

for a specified inspection technique is Optimumlnspect written by the au- 

thor. The program is written in Fortran 77 and links the structural reliability 

program RELTRAN (RELiability TRANsformation) [Lee et al. 1993] with 

the optimization program ADS (Automated Design Synthesis) [Vanderplaats 

1986]. A different version of the program was written to accommodate two, 

three, and four lifetime inspections, respectively. 

The user is required to complete subroutines which define the limit 

state equations and the accompanying gradients. The limit state equations 

describe the behavior of the structure being investigated. The user also inputs 

data which describe the random variables, correlation, and limit state equa- 

tion parameters. This information is needed by RELTRAN which has the 

capability to calculate the reliability of single components and series systems. 
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The user also inputs data for the initial section properties, minimum 

allowable reliability index, life of structure, and cost data. While ADS provides 

many optimization options, numerous sample trials revealed that ISTRAT=0, 

IOPT=4, and IONED=5 provide the best answer with the fewest iterations 

and no violated constraints. This translates to skipping a specific strategy 

and going directly to the optimizer (ISTRAT=0), using the method of feasible 

directions as the optimizer technique (IOPT=4), and using the golden section 

method for a constrained function (IONED=5) as detailed in Vanderplaats 

[1984]. 

Given the deterioration model, the inspection technique capabilities, 

and all of the equations described earlier which reflect the possible repair paths, 

the program computes the optimum inspection times based on minimizing the 

total cost. The results are sent to a graphing subroutine which produces the 

data needed to create a graph of ß versus time. 

2.3   Results of the Single Component System for Two, 
Three, and Four Inspections 

The model described above was tested for structures whose mean 

resistance (R) was 12.5, 13, 14, 15, 16, and 17 for inspection techniques A, B, 

C, and D, and 5R = 0.10. Figure 2.7 compares the associated inspection and 

repair costs for each case when only two inspections were allowed over the life 

of the structure. Figures 2.8 and 2.9 list the same for the cases of three and four 

inspections respectively. Tables 2.2, 2.3, and 2.4 show the optimum timing of 

the inspections and the associated total costs for various bar resistances and 
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inspection techniques considering two, three, and four lifetime inspections, 

respectively. 

Table 2.2:    Optimum Inspection Strategy and Total Costs for 

Two Lifetime Inspections 

Lifetime 

Inspections 

Inspection 

Technique 

Mean Bar 

Resistance 

Inspection Times Total 

Cost h <2 

2 A 13.0 3.42 6.76 14.6 
2 A 14.0 4.40 4.90 10.1 
2 A 15.0 3.33 3.83 8.6 
2 A 16.0 0.51 1.21 5.1 
2 A 17.0 0.51 1.01 4.7 
2 B 13.0 3.42 6.76 13.8 
2 B 14.0 4.45 4.96 8.1 
2 B 15.0 3.36 3.88 7.1 
2 B 16.0 0.50 1.00 3.5 
2 B 17.0 0.50 1.01 2.6 
2 C 14.0 4.67 5.17 7.6 
2 C 15.0 4.05 4.66 6.4 
2 C 16.0 2.12 2.90 2.7 
2 C 17.0 0.50 1.00 1.5 
2 D 15.0 4.20 7.55 6.1 
2 D 16.0 4.00 5.92 2.2 
2 D 17.0 2.91 3.50 1.0 

Note: £fi = ( ).10 for all co ises. 

The less expensive inspection techniques will not work for the struc- 

tures with smaller resistances where early detection of the damage is essential 

to maintaining the structure above the minimum reliability index. For exam- 

ple, when the mean resistance, R, is equal to 13, inspection technique D is 
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Table 2.3:    Optimum Inspection Strategy and Total Costs for 

Three Lifetime Inspections 

Lifetime 

Inspections 

Inspection 

Technique 
Mean Bar 

Resistance 
Inspection Times Total 

Cost k h t3 

3 A 12.5 2.56 5.08 7.56 21.7 
3 A 13.0 3.18 6.23 6.74 17.5 
3 A 14.0 3.95 4.47 4.97 13.1 
3 A 15.0 2.43 2.94 3.45 11.1 
3 A 16.0 0.50 1.01 1.52 7.9 
3 A 17.0 0.51 1.02 1.53 7.5 
3 B 13.0 3.24 6.35 6.85 14.6 
3 B 14.0 4.11 4.62 5.14 10.1 
3 B 15.0 2.53 3.02 3.52 8.7 
3 B 16.0 0.50 1.00 1.50 5.1 
3 B 17.0 0.50 1.00 1.50 4.9 
3 C 14.0 4.25 4.77 5.27 8.4 
3 C 15.0 3.17 3.92 4.43 7.3 
3 C 16.0 1.41 2.11 2.88 3.5 
3 C 17.0 0.50 1.01 1.53 2.3 
3 D 15.0 4.01 6.03 7.32 6.5 
3 D 16.0 3.98 5.11 5.70 2.7 
3 D 17.0 1.67 2.44 3.17 1.50 

Note: 6R = ( ).10 for all eg ises. 
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Table 2.4:    Optimum Inspection Strategy and Total Costs for 

Four Lifetime Inspections 

Lifetime 

Inspections 

Inspection 

Technique 

Mean Bar 

Resistance 

Inspection Times Total 

Cost h *2 h u 
4 A 12.18 2.00 4.00 6.00 8.00 29.0 
4 A 12.2 2.00 4.00 6.00 8.00 28.7 
4 A 12.5 1.85 3.91 5.70 7.8 25.7 
4 A 13.0 0.51 3.25 6.25 6.75 20.4 
4 A 14.0 0.51 3.97 4.48 4.99 15.7 
4 A 15.0 0.50 2.45 2.95 3.45 13.4 
4 A 16.0 0.51 1.02 1.52 2.03 10.9 
4 A 17.0 0.51 1.01 1.53 2.03 10.4 
4 B 12.2 2.00 4.00 6.00 8.00 26.7 
4 B 12.5 1.85 3.91 5.70 7.80 23.7 
4 B 13.0 2.80 3.32 6.39 6.90 15.9 
4 B 14.0 0.50 4.12 4.62 5.13 11.0 
4 B 15.0 0.50 2.50 3.01 3.52 9.7 
4 B 16.0 0.51 1.03 1.53 2.03 7.5 
4 B 17.0 0.51 1.02 1.52 2.05 7.2 
4 C 13.0 3.60 4.84 7.13 8.12 13.8 
4 c 14.0 0.54 4.26 4.75 5.28 9.2 
4 c 15.0 0.58 3.34 3.87 4.37 8.0 
4 c 16.0 0.67 1.18 1.71 3.04 4.2 
4 c 17.0 0.51 1.02 1.53 2.03 3.3 
4 D 14.0 2.00 5.48 5.98 7.99 8.0 
4 D 15.0 2.00 4.01 6.03 7.32 7.0 
4 D 16.0 2.00 3.97 5.10 5.70 3.2 
4 D 17.0 2.00 2.51 3.13 3.63 2.0 

Note: 6R = C ).10 for all ca ises. 
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unsatisfactory for two, three, or four inspections. Inspection technique C will 

work for R=13 but only if four inspections are allowed. Inspection techniques 

A and B will work for all cases when i?=13. 

At one extreme where #=12.18, only inspection technique A with 

four inspections will solve the problem without violating any constraints. At 

the other extreme where R=17, any technique will work but inspection tech- 

nique D with two inspections provides the lowest cost solution where the prob- 

ability of repair is so small that the cost of inspection is the only cost that 

appears. 

The lowest quality inspection technique that provides an answer also 

provides the lowest cost. The selection of the proper technique for the problem 

at hand is important. Looking, for example, at the four inspection case (Fig. 

2.9), if one chose inspection technique A for the structure having the mean 

resistance R=17, one would be paying over five times as much as if inspection 

technique D was chosen. On the other hand, if #=13, using inspection tech- 

nique A would cost about 1.5 times as much as the optimum but inspection 

technique D lacks the detection ability to keep the structure from falling be- 

low the minimum reliability index. The consequences of a poor selection of 

an inspection technique are either additional cost or potential violation of the 

imposed reliability constraints. 

The cost effect of the choice of technique is greatest when the ex- 

pected number of repairs is small. In the cases of two, three, or four inspec- 

tions, the percent difference in costs for the different techniques is greatest 
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when R=17. The number of expected repairs is small and the total cost is 

dominated by the inspection cost. As the expected number of repairs increases 

such as for i?=13, the cost of repair dominates the total cost and the percent 

cost differential between the techniques drops. 

For these examples, the general conclusion is that if the number of 

repairs is expected to be small, the cheapest technique that will do the job 

should be chosen. The cost savings will be significant and there is little chance 

of violating the constraints. If the number of repairs is expected to be large, 

the best technique available should be selected because the extra cost is small 

relative to the total cost of inspection/repair and the penalty of a bad choice 

is a high likelihood of violated reliability constraints. In these examples, the 

cost of inspection is relatively close to the cost of repair. For examples where 

the cost of repair is much larger than the cost of inspection, that conclusion 

is probably invalid. 

The timing of inspection and likelihood of repair for different struc- 

tures are investigated next where the number of inspections and the inspection 

technique are fixed. Fig. 2.10 shows the case of two inspections using inspec- 

tion technique A. Figs. 2.11 and 2.12 show the cases of three inspections using 

inspection technique B and four inspections using technique C, respectively. 

The results are similar in all three figures. At the higher resistances, the proba- 

bility of repair is low and the effect of the repair barely appears on the graphs. 

As the resistances become lower , the probability of repair becomes greater 

and the effect of the repair is much more visible. 
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When the inspections are not needed, they tend to be as early in 

the life of the structure as the constraints allow. Fig. 2.10 shows this for the 

structures where i?=16 and R=17. As the mean resistance decreases, the 

mean timing of the inspections comes later in the life of the structure and the 

interval between inspections becomes larger. Figs. 2.11 and 2.12 demonstrate 

as well that the additional inspections are scheduled as early in the life of the 

structure as possible where their effect is minimal if they are not needed. As 

the mean resistance decreases, the effects of the third and fourth inspection 

are more pronounced. The most extreme case is shown in Fig. 2.13 for the four 

inspection case with inspection technique A where _R=12.18. The timing of the 

inspections is stretched out to 2, 4, 6, and 8 years with maximum probability 

of repair at each inspection. If the mean resistance was reduced even slightly, 

there would be violated constraints. 

The effect of the different inspection techniques where the structure 

and the number of inspections are held constant is investigated next. Fig. 2.14 

shows the case of two inspections when the mean resistance is R = 14 and 

ÖR = 0.10. Fig. 2.15 shows the four inspection case when the mean resistance 

is R = 15 and SR = 0.10. The timing of the inspections for the higher quality 

techniques occurs earliest in the life of the structure and grows progressively 

later as the quality of the inspection technique drops. The probability of mak- 

ing the repairs is higher for the higher quality inspection techniques because 

the probability of detection is higher. 

In Fig. 2.15, the expected probability of making a repair is so small 
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that the effect of the repair is not visible on the graph. This indicates that 

the fourth inspection was not needed for this structure. In fact, the graph 

for three lifetime inspections is almost identical to the four inspection graph 

in Fig. 2.15. As shown in Figs. 2.8 and 2.9, the only difference in the costs 

between the three and four inspection case is the cost of the fourth inspection. 

For techniques C and D, however, it appears that even the third inspection 

was not necessary, and only two repairs appear on the graph. For techniques 

C and D in the four inspection case, there were two unnecessary inspections 

early in the life of the structure. 

Finally, the optimum inspection strategy for a given structure can 

be selected. Figure 2.16 shows the costs for all possibilities for a structure 

when the mean resistance R = 14 and SR = 0.10. The best solution for this 

structure is to conduct two lifetime inspections using technique C where the 

cost is 7.6. Other acceptable solutions where the cost is within ten percent 

of the optimum would be four inspections with technique D, three inspections 

with technique C or two inspections with technique B. Technique A would be 

a waste of money in this case. 

Similarly, the optimum solution for other structures based on mini- 

mum cost are shown in Table 2.5 

2.4   Series System 

A similar analysis is now performed on a two bar series system as 

shown in Fig. 2.17. In a series system, the failure of any member causes the 
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Table 2.5: Optimal Inspection Strategy For Different Structures 

Mean Resistance Number of Inspections Optimal Technique 

12.18 4 A 

12.5 3 A 

13 2 B 

14 2 C 

15 2 C 

16 2 D 

17 2 D 

Note: 5R = 0.10 for all cases. 

entire system to fail. The system is still subjected to a centric axial load and 

the resistance, load, and area of the bars have not changed. The resistances 

of the bars are assumed to be uncorrelated. The same deterioration model 

(Eq. 2.3) is used. 

Bari 

R,A 
i   i 

Bar 2 

R,A 
2      2 

Figure 2.17: Two Bar Series System 

The major difference in the problem is that there are four options 

after every inspection:   (a) repair both bars, (b) repair bar 1 but not bar 
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2, (c) repair bar 2 but not bar 1, or (d) repair neither bar. For a series 

system with k bars, the number of branches expands to (2fc)" where n is the 

number of lifetime inspections. The current two bar structure (k = 2) with 

two inspections (n = 2) will have 16 possible paths and with three inspections 

(n = 3), there will be 64 paths. 

The two bar series structure was analyzed for two and three lifetime 

inspections. Figs. 2.18, 2.19, 2.20, 2.21, and 2.22 show the 64 paths, the num- 

bering system for the three inspection problem and the probabilities associated 

with each path. Fig. 2.18 shows the 64 branches and Figs. 2.19 through 2.22 

breaks the event tree into quarters and shows the notation in more detail. 

The problem statement for the three inspection case is identical to that for 

the single component structure as indicated below. 

Minimize: Ctot 

such that 

ßtl > /?mm = 2.0 (2.40) 

ßt2 > ßrmn = 2.0 (2.41) 

ßt3 > A™ = 2.0 (2.42) 

ß\Q years ^ ßmin = 2.0 (2.43) 

0.5 < ti < 7.0 (2.44) 

0.5 < h-ti< 7.0 (2.45) 

0.5 < h-t2< 7.0 (2.46) 

t3 < 10.0 (2.47) 
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With so many branches, consistent notation is critical to following the 

problem and trouble-shooting for errors. Again, every possible time interval 

between inspections is identified and notation which describes the probability 

of failure and the reliability index over these intervals is developed. Also, the 

damage intensity, 77, must be tracked over every time interval. 

Let: 

Pfi = $(~0l)        Vbarl = Vlbl    Vbar2 = Vlb2 

Pha = $(-/?1212) Vbarl = V2abl Vbar2 = V2ab2 

Phb = $( "01202 ) Vbarl = V2abl Vbar2 = V2bb2 

Pf2c = $(-00212) Vbarl = V2bbl Vbar2 = V2ab2 

Phd = $(-00202) Vbarl = V2bbl Vbar2 = V2bb2 

Pfsa = $(-02323) Vbarl = V3abl Vbar2 = VZab2 

Phb = $(-02313) Vbarl = Viabl Vbar2 = V3bb2 

'62 
Phh = $(-00313) Vbarl = V3cbl Vbar2 = Vsb, 

Pf3i = $(-00303) Vbarl = V3cbl Vbar2 = ^3c62 

Pha = $(-03434) Vbarl = Viabl Vbar2 = V4ab2 

Pf4b = $(-03424) Vbarl = Viabl Vbar2 = Vibb2 

Pho     =     $(-00414)        Vbarl = Vldbl    Vbar2 = Vicb2 

PUp     =     $(-00404)        Vbarl = Vidbl    Vbar2 = VUb2 
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The probabilities and reliability indices listed above are based on the 

entire system. The system reliability is calculated based on the state of repair 

of each bar. For example, ßikjk is the reliability index at time tk when the first 

bar was last repaired at time U and the second bar was last repaired at time 

tj. As such, /?03i3 is the reliability index at time t3 when the first bar was last 

repaired at time i0 which means it has never been repaired and the second bar 

was last repaired at time t\. Figure 2.23 shows a time line which provides a 

pictorial description of these values for the two inspection case. Over each of 

these time periods, the damage intensity, 77, is calculated. Figure 2.24 shows 

the additional values needed for the three inspection case. 

From the damage and the quality of the inspection technique used, 

the probability of detection (Pdeu) is again calculated for each bar separately 

where i indicates variable subscripts which uniquely identify that particular 

inspection. Similarly, the probability of repair (PrePi) is calculated over every 

possible time period with the subscripts uniquely defining that specific repair. 

The probability of repair is based on the system reliability index rather than 

the reliability of any individual member. With these values, the probability 

of each branch and sub-branch as numbered in Figs. 2.19 through 2.22 can be 

calculated. Note that R$~ indicates that at time £3, Bar 1 is repaired (+) and 

Bar 2 is not repaired (-). 
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For time U: 

For time U: 

Pfa — P\R\     ) — idetibl±detib2*repi 

Pb2 = P{R\     ) = Pdethl (1-0 — Pdetlb2)Prepi 

Pb3 = P(R;+) = (l.0-PdetljPdetlb2Prepi 

Pbi = P(R--) = l.0-(Pbl+Pb2+Pb3) 

*sub3ai 
= *det2abl-*det2ab2*rep2a 

*sub3a2 
= Pdet2abl\*--V ~ Pdet2ab2)Prep2a 

*sub3o.3 ~ [*--v ~ Pdet2abl )Pdet2ab2Prep2a 

*sub3a,4 
= J--U  —   [P.sub3ai   + Psub3a2   + Psub3a3 ) 

Ph = P(Rl+f)Rt+) = PblPsubZal 

pb6 = p(Rt+r\Rt)=pblpSub3a2 

Pb7 = P(Rf+[]R^) = PhPsub3a3 

Pbg = P{Ri      11-^2    ) = Ai Psub3a4 

*sub3dl — *det2bbl *det2bb2 Prep2d 

Psub3d2 = Pdet2t>bl (1-0 — P,det2bb2)Prep2d 

^sub3d3 = (,1-U — Pdet2bbl )Pinsp2bb2P:rep2d 

Psub3di = 1-0 — [Psub3dl  + Psub3d2 + -Psufc. 

AIT = -P(-Rl      (1-^2     ) = Pb4Psub3dl 

3d 3' 
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For time £3: 

-P&I8 = -^(^1 fj^2 ) = Pb4Psub3d2 

A19 = P(Rl~r\R2+) = PbiPsub3d3 

Pb2o     =     P\P\      [1-^2     ) = PbiPsub3d4 

p   p p p 
-1 su&4ai 

rdet3abl
jrdet3ab2-

rrep2a 

*sub4a.2 
= *d,et3abl (J--U — Pdet3ab2 )Prep2a 

*sub4a3 
= K*-" ~ Pdet3abl )Pdet3ab2^rep2a 

PSUb4ai ~ -*-■" _   {*sub4ai   + -Lsub4a2     '    *Sub4a3) 

Pb21 = P(Rl+PlRi+f)Rt+) = Pb5Psub4al 

Pb22 = P(Rl+p\Rl+f)Rt) = PhPsubia2 

pb23 = P(Ri+f]Rt+f]Rz+) = P^PSubAa3 

Pb2i = P(Rt+f]Ri+f]Rs~)=Pb&PsubAa4 

*sub4il —     *det2bbl *det2bb2 *rep2d 

Psub4i2 =     Pdet2bbl{i--0 — Pdet2bb2)Prep2d 

Psub4i3 =     (1-0 — Pdet2bbl)P,'det2bb2Prep2d 

Psub4ii =     1-0 — \Psub3dl + Psub3d2 + Psub3dz) 

pbsl = p(Rrf)R;~PiRi+) = Pb2oPsubiil 

pbS2 = p(Rrf]RrriRt) = Pb2oPsub4i2 

pb83 = prnrn^Vft/^, 
pbM = P(Rrf)R^nRD = Pb20Psub4i4 
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Recalling Eqn. 2.26, for the reliability index at time t, the reliability 

index ß3 at £3 can be calculated using the notation above as: 

ß4   =   -q>-i[Pha(pb5+pb9+Pbi3+pbi7) 

+Pf3b(Pb6 + Pblt) + Pf4c(Pb7 + Pbu) 

+Pf3d(Pbs) + PhSPho + n18) + Pf3f(pbl3) 

+ Pf3g(Pbl5   + PbJ  + P/3,(A16)  + PfJPbJ] 

and the reliability index ßw years can be calculated as: 

ßlO years     =     ~$~   [Pf4a {Pb2i + Pb25 + A29 + A33 + Pb37 + ^641 + A45 + 

Pbi9 + Pb53 + PbS7 + Pb61 + Pb65 + Pb69 + Pb73 + Pb77 + Pb8i) + 

Pfib(Pb22 + Pbso + Pbss + Pb46 + Pb5i + Pb62 + A70 + Phs) + 

^/4c(^23 + Pb27 + n39 + Pfc43 + Pbn + Pb59 + Pb71 + A7B) + 

Pf4d(Pb24   + -P&40  + Pb56   + Pb72)  + 

Pfie (Pb26 + -P&34 + Ass + Aee) + 

Pf4f(Pb2s + Pbeo) + 

Pfig(Pb31   + A35   + ^47  + A51)  + 

Pf4h(Pb32 + Pbis) + 

Pf4i(Pb36)  + 

Pf4j (Pbi2 + Pbso + ^>74 + PbS2 ) + 

Phk(Pb44 + Pb76) + 
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Pf4l(Pb52) + 

Pf4m (Pb63  + Pb61 + Pb79 + Pb&3) + 

Pf4n(Pb6i  + Pbso)  + 

Pf4o(Pb6S) + 

Pf4p(Pb8i)} 

The computation of the cost of repair is complicated by including 

fixed and variable costs which requires tracking the damage intensity at every 

repair for both bars. The number of repairs varies because each branch offers 

a different number of repairs. Branch 21 (Fig. 2.18), for example, repairs both 

bars three times. Branch 46 (Fig. 2.20) repairs bar 1 two times and bar 2 only 

once. Branch 84 (Fig. 2.22) has no repairs of either bar. The cost of inspection 

and the fixed cost of repair calculation is the same as the single component 

structure. The fixed cost is applied if either bar is repaired. The additional 

cost appears in the variable cost because there is a second bar to repair. Using 

Eqn. 2.29, the cost of repair is calculated as follows: 

Cb2i     =     Pb2i (3(C/ix) + Cvar(T]lbl + T]lb2 + T]2abl + V2ab2 + %a61 + VSab2)) 

Cb22     =     Pb22 (3(Cfix) + Cvar{Vlbl + Vlb2 + V2abl + V2ab2 + V3abl)) 

Cb23     =     Pb23{3(Cfix) + Cvar{r)lbl + T]lb2 + T]2abl + r]2ab2 + V3ab2)) 

Cb82     —     Pb82(l(Cfix) +C„ar(?73d61)) 
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CbS3   -   PbS3 (1 (Cfix) + Cvar (r]3db2)) 

C/,0.   =   0 

84 

{-'rep / j {-'branches 
i=21 

{-'tot ^\{-'insp) ~r {-'rep 

The system reliability index for the two-bar series system was computed us- 

ing the upper Ditlevsen bound provided by RELTRAN. The load P and the 

resistances of both bars, Rbari and Rbar2, were all normally distributed. The 

optimum inspection strategy was obtained by linking RELTRAN with ADS 

as described in Section 2.2.7. 

2.5   Results of the Series System for Two Inspections 

Figure 2.25 shows the respective total costs for the two bar series 

structure with two inspections. Both bars had equal resistances in each case. 

The trend was similar to the single bar system in that the percent difference 

in total costs was largest for the highest resistance where the effect of the 

inspection cost is prominent. The optimum timing of the inspections and total 

costs associated with the various inspection techniques and bar resistances are 

shown in Table 2.6. 

The costs were higher overall than in the case of the single bar struc- 

ture for two reasons.  The variable cost of repair was greater because of the 
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Table 2.6:    Optimum Inspection Strategy and Costs for Two Bar 

Series System with Two Lifetime Inspections 

Bar 1 Bar 2 Insp. 

Tech. 
Time Time 

t2 

Total Cost 

Ctot PR OR ßR OR 

13.5 1.35 13.5 1.35 A 3.83 6.18 15.0 
14.0 1.40 14.0 1.40 A 4.70 5.19 11.8 
15.0 1.50 15.0 1.50 A 3.90 4.39 10.3 
16.0 1.60 16.0 1.60 A 2.18 2.69 7.7 
17.0 1.70 17.0 1.70 A 0.50 1.01 4.9 
14.0 1.40 14.0 1.40 B 4.59 5.17 9.4 
15.0 1.50 15.0 1.50 B 3.85 4.43 8.6 
16.0 1.60 16.0 1.60 B 2.09 2.72 6.3 
17.0 1.70 17.0 1.70 B 0.51 1.01 3.0 
14.0 1.40 14.0 1.40 C 4.83 5.42 9.9 
15.0 1.50 15.0 1.50 C 4.55 5.05 9.1 
16.0 1.60 16.0 1.60 c 3.55 4.05 7.0 
17.0 1.70 17.0 1.70 c 0.50 1.00 1.5 
15.0 1.50 15.0 1.50 D 6.86 7.40 10.4 
16.0 1.60 16.0 1.60 D 3.93 7.22 6.7 
17.0 1.70 17.0 1.70 D 2.77 3.38 1.0 
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additional bar and the series structure with uncorrelated resistances is inher- 

ently less reliable than a single component structure of the same size. The 

series system is only as strong as its weakest member and the chances of get- 

ting one member weaker than the others are increased if the resistances are 

independent. This is reflected by inspection technique B being unable to pro- 

vide an answer which meets the constraints when the mean resistance of both 

bars is R=13, while an acceptable solution was provided for the single compo- 

nent system. The costs were almost identical however at the higher resistances 

where only the inspection costs were involved. 

The biggest surprise was associated with the structures where the 

mean resistances of both bars were R—15 and R=16. The lower quality in- 

spection techniques did not provide the lowest cost contrary to the trend estab- 

lished for the single component structure. Figure 2.26 shows the results for the 

R=15 structure for the different inspection techniques. Inspection techniques 

A and B were close together with similar times of inspection and similar prob- 

abilities of repair. As a result, the cost for inspection technique B was lower 

since the cost of inspection was less. Inspection technique D had inspection 

times much later in the life of the structure and the probability of repair was 

much higher. The increase in cost due to the higher probability of repair offset 

the lesser inspection cost. This does not appear to happen often but seems to 

be a result of the poorer detection capability causing higher repairs later in 

the life of the structure. 

Fig. 2.27 shows the results for varying resistances with the number of 
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inspections and the inspection technique fixed. Using inspection technique C, 

the trends are the same as for a single component structure. As the resistance 

decreases, the effects of the repairs are larger. The mean time of inspection 

occurs later in the structure's life and the time interval between inspections 

becomes larger. 

Finally, Fig. 2.28 and Table 2.7 show the results for structures where 

the resistances of the two bars are not equal. With a series system which is 

only as strong as its weakest member, it is expected that the structure with 

equal resistances would be more reliable. In Fig. 2.28, the combined resistance 

of the two bars was the same but the distribution became increasingly unequal. 

As expected, the structure where i?&ari=16 and Ä(,ar2=16 required less repair 

and produced the lowest total cost. Similarly, the structure with the most 

unequal resistances, Rbari=18 and i?6ar2=14, produced the highest cost and 

had the highest probability of needing repair. 

Table 2.7: Optimum Inspection Strategy and Costs for Two Bar 

Series System with Unequal Bar Resistances, Inspec- 

tion Technique C 

Bar 1 Bar 2 Insp. 

Tech. 
Time Time 

t2 

Total Cost 

Ctot VR OR l*R OR 

16.0 1.60 16.0 1.6 C 3.55 4.05 7.02 
17.0 1.70 15.0 1.50 C 4.10 4.65 8.27 
18.0 1.80 14.0 1.40 C 4.53 5.03 9.26 
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2.6   Two-Bar Parallel System 

The next structure to be analyzed is the two-bar parallel system. 

Whereas a series system is only as strong as its weakest member, a parallel 

system is at least as strong as its strongest member. A parallel structure does 

not fail until all of its members have failed. Figure 2.29 shows the two bar 

structure again subjected to a centric axial load. The load and area remain 

the same as in the previous examples (i.e., the load P is normally distributed 

(fip = 8.0 and oP = 0.8) and the initial areas of the bars are A\ — A2 = 1.0). 

The mean value of the resistances were halved (i.e., fiR = 7.0 and cr# = 0.7 

for both bars) in order to make a fair comparison with the series and single 

component structures considered earlier. The coefficient of variation 6 — 0.1 

was unchanged. 

Fortunately, the nature of the problem is identical to that of the series 

system where the number of paths and methods for determining probability 

of repair and detection likelihood are exactly the same. The only difference is 

that the system reliability index is calculated for a parallel system. The force 

(P) is distributed to the two bars in relation to their stiffnesses which in this 

case is in proportion to their cross-sectional areas. The system is assumed to 

be ductile and again the resistances are assumed to be uncorrelated. 

The system reliability index was determined using the system reli- 

ability program RELSYS which is described in the next chapter.   RELSYS 



90 

Bari 

Rl>Al 

Bar 2 

R2, A 2 

Figure 2.29: Two Bar Parallel System 

was linked with the optimization program ADS to determine the optimum 

inspection strategy as described in Section 2.2.7. 

Fig. 2.30 shows the costs for the two-inspection, two-bar parallel 

system for varying resistances and inspection techniques. Table 2.8 shows 

the optimum times and costs for different resistances using all four inspection 

techniques. The general trend is the same as that for the series and single 

component systems. The costs are similar and the same effects regarding 

cost differential and inspection quality still hold. Even though the resistances 

of the bars in the parallel system were halved relative to the series and single 

component structures, the parallel structure was still more reliable. Inspection 

techniques A and B provided answers with no violated constraints for mean 

resistances as low as i?=6.0. Neither the single component or series structure 
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came close. 

Table 2.8:    Optimum Inspection Strategy and Costs for Two Bar 

Parallel System with Two Lifetime Inspections 

Bar 1 Bar 2 Insp. 

Tech. 

Time Time 

*2 

Total Cost 

Ctot ßR 0R HR OR 

6.0 0.60 6.0 0.6 A 3.28 6.73 17.07 
6.25 0.625 6.25 0.625 A 4.0 6.0 14.43 
6.5 0.65 6.5 0.65 A 4.52 5.03 11.29 

6.75 0.675 6.75 0.675 A 4.04 4.55 9.67 
7.0 0.70 7.0 0.70 A 3.61 4.13 8.49 
7.5 0.75 7.5 0.75 A 1.95 2.45 5.96 
6.0 0.60 6.0 0.6 B 1.93 2.45 4.63 

6.25 0.625 6.25 0.625 B 4.0 6.0 13.44 
6.5 0.65 6.5 0.65 B 4.38 5.02 8.89 

6.75 0.675 6.75 0.675 B 3.94 4.57 7.69 
7.0 0.70 7.0 0.70 B 3.57 4.18 6.79 
7.5 0.75 7.5 0.75 B 1.93 2.45 4.63 
6.5 0.65 6.5 0.65 C 4.27 5.63 6.62 

6.75 0.675 6.75 0.675 C 4.23 5.09 6.00 
7.0 0.70 7.0 0.70 C 4.17 4.67 5.39 
7.5 0.75 7.5 0.75 C 3.12 3.63 4.06 
7.0 0.70 7.0 0.70 D 6.22 6.73 4.97 
7.5 0.75 7.5 0.75 D 5.62 6.13 3.50 

Fig. 2.31 looks at varying resistances for two inspections when the 

inspection technique is fixed - in this case, inspection technique B. The resis- 

tances are the same in both bars. The trend is the same as already observed 

for series and single component structures. As the resistance decreases, the 

mean time of inspection is later, the interval between inspections increases, 
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and the probability of making the repairs increases significantly. 

Fig. 2.32 investigates the effect of unequal bar resistances. With a 

parallel system, it is expected that if the sum of the mean resistances of the 

bars are equal, the most unequal distribution will produce the most reliable 

structure. This is verified in Fig. 2.32 and Table 2.9 where the structure 

which has the highest probability of repair and the most costly inspection 

program occurs when Rbari=6.0 and i4ar2=6.0. Totally opposite to the effect 

observed in the series structure, as the resistances become more unequal, the 

reliability of the structure increases and the cost of repair and maintenance 

drops considerably. 

Table 2.9: Optimum Inspection Strategy and Costs for Two-Bar 

Parallel System with Unequal Bar Resistances, In- 

spection Technique B 

Bar 1 Bar 2 Insp. 

Tech. 
Time Time 

*2 

Total Cost 

Ctot ßR 0R l*R CTR 

6.0 0.60 6.0 0.6 B 1.93 2.45 4.63 
7.0 0.70 5.0 0.50 B 2.02 5.49 11.03 
8.0 0.80 4.0 0.40 B 2.83 3.42 5.57 
9.0 0.90 3.0 0.30 B 0.50 1.01 2.86 

As a final comparison, Fig. 2.33 shows the results for an equivalent 

series, single component, and parallel system using two inspections and in- 

spection technique B. As expected, the parallel system behaves much better 

than the single component system with only a small probability of repair early 
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in the life of the structure. The series system behaves worse than the single 

component system with a later mean inspection time and a higher probability 

of repair. If the bar failures were correlated, this effect would be diminished. 

If the member resistances were perfectly correlated, the three structures would 

be expected to produce results identical to those of the single component struc- 

ture [Hendawi 1994]. 

While the model optimizes the timing of the inspections to minimize 

the total cost, it does not provide assistance in determining whether it is better 

to repair one member or both. And if only one member is to be repaired, 

which should it be? Understanding the system behavior of series and parallel 

structures would help in this decision. In a parallel system, it would be most 

beneficial to repair the strongest member. Conversely, in a series system, the 

reliability would be most improved by repairing the weakest member. 

2.7   Conclusions 

After minimizing the total cost of inspection and repair of simple 

series, parallel, and single component structures for several different inspection 

techniques, the following conclusions can be reached: 

1. The method described herein has application primarily for those 

inspections which would be used in special cases and are sufficiently expensive 

to justify this kind of analysis. This method could also be justified for a 

choice between inexpensive inspection techniques which would be applied to 

a large number of bridges where a large total cost could be affected by the 
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result. The options at inspection points should be complete repair or no repair. 

Attempting to repair one member without repairing another complicated the 

problem considerably without contributing much to the solution. The analysis 

could be based on either the component or system reliability index. If the 

inspection is focusing on a specific defect, a component reliability analysis 

may be more appropriate. 

2. By limiting the analysis to complete repair or no repair decisions, 

the number of possible branches is limited to 2" where n is the number of 

lifetime inspections. Still a structure with 10 inspections, for example, would 

involve 1024 possibilities which becomes impractical. One suggested technique 

to reduce the number of branches is to eliminate any branch whose probability 

of occurrence is less than one percent of the probability of the largest branch 

[Thoft-Christensen and S</>rensen 1987]. It is a good idea but programming 

the constraint would be a challenge. A different solution would be to shorten 

the time period over which the inspection program is being designed using 

fewer inspection periods and extrapolate to the larger desired time period. 

3. The selection of an inspection technique is important. For the 

examples used in this chapter where the cost of inspection is relatively close 

to the cost of repair, one should choose the least expensive technique that will 

provide a solution but it is difficult to determine this in advance. For a struc- 

ture where there exists a large probability of repair, a high quality technique 

should be chosen. The percent cost differential between techniques relative to 

the total inspection/repair cost is small and a bad selection will result in vio- 
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lated reliability constraints. If the probability of repair is small, a low quality 

technique should be chosen. The percent cost differential is significant be- 

tween techniques and the chance of violating the reliability constraints by a 

poor selection is much less. This conclusion is not necessarily valid for cases 

where the cost of repair is several orders of magnitude larger than the cost of 

inspection. 

4. For series, single component, and parallel systems, the total cost 

of inspection/repair rose as the mean resistance of the structure became less. 

As the resistance became less for the same inspection technique, the mean time 

of inspection was later in the life of the structure, the time interval between 

inspections became greater, and the probability of making repairs increased. 

5. In general, for series, single component, and parallel systems, 

the total cost of inspection/repair dropped as the quality of the inspection 

diminished. There were some clear exceptions to this however. The mean 

times of inspection tended to be later in the life of the structure for the lower 

quality inspection techniques and the probability of needing repair sometimes 

was greater and sometimes was lower depending on the structure. For some 

structures, the poorer detectability was an advantage resulting in fewer repairs, 

while in others, the inability to detect defects caused greater repair costs later 

on. In some cases, the additional costs of repairs more than offset the savings 

in inspection cost. 

6. The series structures were less reliable than the equivalent single 

component structure and required more repairs and a higher expected total 
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cost. The parallel structures were more reliable than the equivalent single 

component structure and demonstrated a lower probability of repair. The 

expected total cost associated with the parallel system was still higher than the 

single component system because there were more components in the structure. 

These differences in both the series and parallel structures would have been 

less if the resistances of the members had been correlated. 



CHAPTER III 

RELIABILITY OF SYSTEMS 

3.1   Introduction 

While it is desirable to consider the reliability of an entire structural 

system, this reliability can be quite difficult to calculate - which is the primary 

reason it has been neglected in the past. Numerous methods and approxi- 

mate techniques exist which can accurately calculate the reliability of a single 

component with respect to a single failure mode. These include: first-order 

approximation (FORM) [Ang and Tang 1984], second-order approximation 

[Melchers 1987], directional simulation [Bjerager 1988], radial-space division 

method [Katsuki and Frangopol 1994], and discrete value methods [USACE 

1992 and 1993]. Computer programs such as Radial Space Division [Katsuki 

1995], CALREL [Liu et al 1989] and RELTRAN [Lee et al 1993] have em- 

ployed these techniques. The same availability of methods and software does 

not exist for the system reliability problem. Other than Monte Carlo simu- 

lation programs such as CALREL and MCREL [Lin 1995], system reliability 

software is scarce. Monte Carlo simulation can be too time consuming for 

many applications. Without such a tool, calculating the system reliability of a 

highway bridge at various stages of its useful life would not be feasible. Com- 

mercially developed system reliability programs include PRADDS [S^rensen 

1987a], PROBAN [Bjerager 1996], and STRUREL [Rackwitz 1996]. 
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The purpose of this chapter is to introduce RELSYS (Reliability of 

Systems), a computer program which quickly calculates the reliability index 

for any structure which can be modeled as a combination of components in 

series and parallel. This chapter will cover the challenges involved in calcu- 

lating system reliability, summarize the methods used by RELSYS for both 

component and system reliability, compare the results from RELSYS with 

those obtained by Monte Carlo simulation, discuss the strengths and limita- 

tions of the program, and suggest potential improvements. The User's Manual 

for RELSYS is in Appendix A and a complete program description including 

variable listings, subroutine descriptions, and a flowchart is in Appendix B. 

3.2   Reliability and Failure 

Engineers design structures to withstand the loads that will be placed 

on them. The designer's objective is to provide, with a very high degree of 

certainty, a structure that will perform as intended. This section addresses 

how that degree of certainty can be calculated. 

An individual structural member is considered safe or reliable when 

the strength, resistance, or capacity of the member exceeds the demand or the 

load acting on it. There will most likely be a degree of uncertainty associated 

with the strength or resistance (R) of the member and the load (L). If the 

designer has some knowledge about the random nature of R and L, the un- 

certainty can be quantified and evaluated. If the probability density functions 

are known or can be accurately estimated, then the reliability or probability 
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of safe performance (Ps) can be expressed as: 

Ps = P(R>L) = P(R-L>0)= [ [     fR>L(r,l)drdl (3.1) 
J   JR>L 

where fR(r) and fL(l) are the probability density functions of R and L and 

fR,L(f, 0 is their joint probability density function. 

If R and L are independent, then Fig. 3.1 illustrates the probability 

of failure for the individual component member. If an incremental load value 

dl is considered, the probability of the load value falling into the interval dl 

and the strength value simultaneously exceeding the load value at that point 

gives the reliability ofthat segment dPs which can be expressed as [Rao, 1992]: 

/oo 

fR(r)dr = fL(l)dl[l - FR(l)} (3.2) 

where: FR represents the cumulative distribution function of R and FR(l) is 

indicated as area Ar in Fig. 3.1. The term, fi(l)dl, is represented by area A\. 

Since the reliability of the member involves the probability of the 

strength exceeding the load, the total reliability (Ps) of the member is ex- 

pressed as: 

//■OO /-OO /-OO 

dPa=        h(l)[      fR{r)dr]dl=        fL(l)[l-FR(l)]dl       (3.3) 
J—oo Jl J—oo 

Failure is defined as the probability that the member will not survive.  This 

means that the probability of failure (Pf) can be expressed as: 

Pf = l-Ps = l 
/OO 

h(l)FR(l)dl (3.4) 
-oo 
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Figure 3.1:    Differential Reliability of a Structure Based on the 

Distributions of the Load and Resistance 
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The failure probability is often computed from the reliability index 

ß. 

Pf = H-ß) (3.5) 

where $ is the distribution function of the standard normal variate. If R and 

L are uncorrelated, the reliability index ß of the member can be determined 

by: 

ß=N = Htk =   HR-fL (36) 

a«     GR~L     y/°2R + °l 

The reliability index graphically depicts the shortest distance from the origin 

to a failure surface in standard normal space defined by f(r, I) = r - I = 0. A 

first-order approximate solution is based on this definition of ß. 

3.3   Limit state functions 

A reliability problem may be a function of many random variables 

other than just resistance R and load L. The generalized structural reliability 

problem is formulated in terms of a vector of basic random variables of the 

structural system, X = {X1,X2, ...,Xn}
T, where XX,X2, ...,Xn are basic ran- 

dom variables that may describe loads, structural component dimensions, ma- 

terial characteristics, and section properties. A limit state function, g(X)=0, 

describes the performance of the structural system in terms of the basic ran- 

dom variables, X; and defines the failure surface which separates the survival 

region from the failure region. It follows that 

<7(X)    >   0  defines the "survival or safe  region" (3.7) 

g(X)   <   0  defines the "failure  region" (3.8) 



106 

If the joint probability distribution function of the design variables 

Xi,X2,..., Xn is fxux2,...,xn(Xi,X2,..., Xn), the probability of the safe state is 

ps   =    / ■■• / fx1,x2,...,xn(X1,X2,...,Xn)dxi...dxn (3.9) 

which may be written as 

Ps   =    I /x(x)dx (3.10) 

where Eq. 3.10 represents the volume integral of /x(x) over the safe region 

g(X) > 0. Conversely, the failure probability would be the corresponding 

volume integral over the failure region 

Pf   =    [ /x(x)dx (3.11) 

The integral describing the joint distribution g(X) can easily become too com- 

plex to solve directly. Approximate techniques are developed to approximate 

this convolution integral and solve for structural reliability. This study uses 

a first-order reliability method (FORM) to search for and approximate the 

shortest distance between the origin and the limit state surface g(K) = 0 in 

the reduced space of standard normal variates. 

3.4    First Order Reliability Method (FORM) 

In the First Order Reliability Method (FORM), the limit state func- 

tion at any point is approximated by a first-order Taylor series expansion about 

that point. This creates a straight line which is tangent to the limit state func- 

tion at the point of interest. The minimum distance ß from the origin to this 
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line is: 
n a 

ß=~ = l-^k=^= (3-12) 

where ([/*, [/*,..., £/*) is the most probable failure point and the derivatives 

(dg/dU*) are evaluated at this same point. 

Based on the user's guess for the most probable point of failure, 

the method involves an iterative search which relies on the gradients of the 

limit state function at the point of failure and the direction cosines to find 

this minimum distance. The detailed theory behind the FORM approach is 

presented in Ang and Tang [1984]. This iterative process is best illustrated by 

an example. 

3.4.1   Example of FORM 

Given the limit state equation, g(X) = g(Xx,X2) = 1X\ - 2X2 = 0, 

the reliability index can be calculated by finding the minimum distance from 

the origin in standard normal space to the failure surface described by g(X). 

The limit state equation g(X) is in the original space which will be denoted 

as the x-space. The minimum distance in question is found in the standard 

normal or reduced space, hereafter referred to as the u-space. Let us assume 

that the variable Xx is normally distributed with a mean value /j,Xl = 2.0 and 

a standard deviation aXl = 0.2 which can be expressed as Xi = N[2.0, 0.2]. 

The parameters for X2 are iV[3.0,0.3]. With these uncorrelated, normally 

distributed variables, the transformation equation from the original space x to 



the reduced space u is: 

Ui = i = 1, 2,..., n 

In terms of the reduced variates, Ui, the limit state would be 

108 

(3.13) 

g(X) = g{aXlUi + fJLXl,...,vxnUn + ßxn) = 0 (3.14) 

or in matrix form 

X = [ox]V + Hx 

where U = {Ui,U2,...,Un}
T, \ix = {fe, Hx2, ■■•, Hxn}

T, and 

(3.15) 

1 ox,     0     •••     0   ^ 

Wx} = 

\ 

0     oX2 

0       0 

0 

°x / 

(3.16) 

The limit state equation g(X) = 0 could be transformed directly to 

the u-space using Eq. 3.13 to obtain g(\J) = 0 

g(X) = 0.133t/!2 + 2.67t/! - U2 + 3.33 = 0 (3.17) 

The algorithm is structured, however, so that the transformation from the x- 

space to the u-space is never explicitly made. This allows for computer code 

where the problem and the solution are provided in the original x-space and the 

user is not aware of the existence of the u-space. The algorithm uses the Direct 

Derivation approach developed by Lee [1994] which was originally incorporated 

into the program RELTRAN [Lee et ai. 1993].   The method simultaneously 



109 

iterates to find the optimal search direction and ensures that the failure point 

is on the failure surface. The method also allows the user to express the limit 

state equation in its original x-space form. 

Using the stated example problem, this iterative FORM approach 

proceeds as follows: 

1) For each random variable, make an initial guess of the most prob- 

able point of failure in the original space (X*). Usually the mean value is a 

reasonable starting guess. For purposes of illustrating the convergence pro- 

cess, this example will make an intentionally bad initial guess. Therefore, let 

X* = 6.0 and X* = 0.5. 

2) Calculate the gradient with respect to each random variable dg/dX* 

based on the initial guess value. The gradient will establish the search direction 

for this iteration. 

dg/dX1 = 4XX 

dg/dX* = 4X*  = 4(6)  = 24 

dg/dX2 = -2 

dg/dX*2 = -2 

3) Calculate the gradients in the reduced space. 

dg/dU   =   dg/dX(dX/dU)    where: X = axU + /xx  anddX/dU = ax 

dg/dU   =   dg/dX(ax) 

dg/dU*   =   dg/dX*(ax) 
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dg/dUl   =   dg/dX*{aXl)  = 24(0.2)  = 4.8 

dg/dU;   =   dg/dX;(aX2)  =  -2.0(0.3)  =  -0.6 

4) Compute Aß based on Taylor series expansion about U*. 

gx(X*)   =   2X1*2-2X2*  = 2.0(6.0)2-2.0(0.5)  = 71 

\SS>; = fW^W* = ^(-^ = ^ 
Aß   =   71/4.837 =  14.68 

5) Compute the updated reliability index ßnew. 

ßnew   =   ßoid + Aß = 0.0 + 14.68 =  14.68 

6) Compute the direction cosines, aguUl. 

dg/dUz 
agi,ui 

dg/dW 
OH   = y/     1 =  =  4.8/4.837 =  .9923 

V dU*I    ^ {dU*> 

a12   =   -0.6/4.837 =  -.1240 

7) Compute the new failure point in the reduced space, U* 

U* = -Otgljß 

U*   =   -aitiß =  -.9923(14.86)  =  -14.68 

U*   =   -ali2ß =  -(-.1240)(14.86)  =  1.82 
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8) Compute the new failure point in the original space, X*. 

X{   =   nXl+u{aXl   =  2 + (-14.68)(0.2)  =  -.9128 

X;   =   ßX2+u*2aX2  = 3 + 1.82(0.3)  =  3.546 

9) Let e = .00001. Substitute the new failure points X{ and X2 into 

the limit state equation g(X). If | g(X*) \< e, then the iteration is complete 

and the solution has converged. If not, perform another iteration using the 

new values of X{ and X2. 

In this case, the solution did not converge and ten more iterations 

were necessary. On the eleventh iteration, the value for | g(X.*) | was less 

than 0.00001 and the solution was sufficiently precise. Table 3.1 shows the 

values for these iterations. Figs. 3.2 and 3.3 show the iterations graphically 

in the reduced and original spaces, respectively. After the eighth iteration, 

the changes were too small to be shown on the graphs. The final reliability 

index was ß = 1.2317. The program RELSYS uses this method to compute 

reliability indices. This problem is Example 1 in the RELSYS User's Manual 

in Appendix A. 

3.5   Correlation 

The random variables in the limit state equation may be correlated 

meaning that a linear relationship exists which relates the behavior of one 

random variable to another. This relationship can affect the overall behavior 

of the failure component. One measure of this relationship between two ran- 

dom variables Xx and X2 is the covariance cov(Xi,X2) which is denoted by 
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Table 3.1:    Iterative FORM Solution for g(X) = 2X\ - 2X2 = 0 

Where A"1=N[2.0, 0.2] and X2=N[3.0,0.3] 

Iter. 

Num. 

Step (2) Step (3) Step (4) Step (5) 

dg/dX* dg/dX* dg/dU* dg/dU; g(x*) A/3 Pnew 

1 24.0 -2.0 4.80 -0.60 71.0 14.68 14.68 

2 -3.65 -2.0 -0.73 -0.60 -5.426 -5.74 8.94 

3 13.52 -2.0 2.70 -0.60 13.458 4.85 13.79 

4 -2.77 -2.0 -0.55 -0.60 -6.831 -8.36 5.43 

5 10.95 -2.0 2.19 -0.60 6.597 2.91 8.34 

6 1.57 -2.0 0.31 -0.60 -7.016 -10.37 -2.03 

7 8.75 -2.0 1.75 -0.60 4.649 2.51 0.49 

8 7.63 -2.0 1.53 -0.60 1.186 0.72 1.21 

9 7.10 -2.0 1.42 -0.60 0.035 0.02 1.23 

10 7.09 -2.0 1.42 -0.60 -6E-04 0.00 1.23 

11 7.09 -2.0 1.42 -0.60 -1E-07 0.00 1.23 

Iter. 

Num. 

Step (6) Step (7) Step (8) 

«i,i «1,2 U{ m X* X* 

1 0.9923 -0.1240 -14.56 1.82 -0.91 3.55 

2 -0.7727 -0.6348 6.90 5.67 3.38 4.70 

3 0.9763 -0.2166 -13.47 2.99 -0.69 3.90 

4 -0.6788 -0.7342 3.69 3.99 2.74 4.20 

5 0.9644 -0.2643 -8.04 2.20 0.39 3.66 

6 0.4626 -0.8866 0.94 -1.80 2.19 2.46 

7 0.9459 -0.3243 -0.46 0.16 1.91 3.05 

8 0.9307 -0.3658 -1.12 0.44 1.77 3.13 

9 0.9211 -0.3892 -1.13 0.48 1.77 3.17 

10 0.9210 -0.3896 -1.13 0.48 1.77 3.17 

11 0.9210 -0.3896 -1.13 0.48 1.77 3.17 
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Reduced Space 

g(u)=.133u1
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Figure 3.2: Results of FORM Iterations in the Reduced Space 
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Original Space 
x„ 

^ x. 

Figure 3.3: Results of FORM Iterations in the Original Space 
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[Benjamin and Cornell 1970]: 

oo    oo 

cov(XuX2) = J   J (xi - pXl){x2 - Hx2)f{xi,x2)dxldx2 (3.18) 
— oo —oo 

where f(xi,x2) is the joint probability distribution of X\ and X2. It is often 

preferable to use the normalized form of the covariance which is called the 

correlation coefficient (pxxx2) where: 

cov(Xi,X2) 
Pxxx2 ox^x2 

(3.19) 

The values for p range from — 1 < p < +1. A value of +1 would 

indicate a perfect linear relationship between the variables X\ and X2. If X\ 

were to increase by a specific amount, we could predict exactly how much X2 

would rise. If Pxux2 — 0, the variables X\ and X2 are statistically independent 

and the behavior of one variable offers no basis for predicting the behavior of 

the other. Perfect negative correlation is indicated by pxux2 = ~~ 1- If ^i were 

to increase by a certain amount, one could predict exactly how much X2 would 

decrease. Values of p between these extremes indicate that the degree of linear 

relationship between the variables is somewhere between these extremes. 

All correlation values pij between all random variables can be col- 

lected in a symmetric correlation matrix p 

( 

P = 

Pll      Pl2 

Pl\     P22 

P\r 

P2n 

\ 

1   Ail     Pn2     " " '     Pnn    , 

(3.20) 
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where pij = p^ and pa = 1.0. 

3.5.1   FORM with Random Variable Correlation 

The FORM algorithm described in Section 3.4.1 can be modified to 

accommodate random variable correlation by introducing an addition trans- 

formed space, the y-space. The x-space is the original space in which the 

problem is formed, the u-space is the correlated reduced standard normal 

space, and the y-space is the uncorrelated reduced standard normal space. 

The reliability index ß is the shortest distance from the origin to the failure 

surface g(Y) = 0 in the uncorrelated, reduced standard normal y-space where 

Y = {Yy, Y2, ...,Yn}
T. The solution procedure is the same except that an 

additional transformation is required from the u-space to the y-space. 

The transformation from the u-space to the y-space is made through 

a transformation matrix T such that 

Y = TTU  and  U = TY (3.21) 

where T is an orthogonal matrix composed of the eigenvectors corresponding 

to the correlation matrix p. Using this transformation, Eq. 3.15 becomes 

X = [ax}TY + px (3.22) 

Consider, for example, a limit state equation with three random vari- 

ables Xi, X2, and X3. The correlation between these random variables would 

be included in a 3x3 correlation matrix [p]. From this correlation matrix, 

three eigenvalues Ai, A2, and A3 are computed.  From Al5 the corresponding 
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normalized eigenvector $1 = {0n, 0i2, 0i3}r is computed. Similarly, A2 and 

A3 produce #2 = {^21, 022,<^23}r and $3 = {03i, 032,033}T, respectively. The 

transformation matrix T would be 

T = 

011     021     031 

-"12     <^22     <^32 (3.23) 

y  <Pl3     9>23     <?33  J 

Using Eq. 3.22, the failure points in the original x-space (X^X^X^) are 

computed from the failure points in the y-space (Y*, YJ, Y£) as 

X{ = 17(71011 + F2Vi021 + K(Vi03i 

X*2 = Fi*a2012 + 17 ^2 022 + 3/7Cr2032 

X;    =    KiV30i3 + r2V3023 + F3^3033 (3.24) 

Step 3 in the algorithm in Section 3.4.1 requires computing the gra- 

dients in the reduced space. These gradients in the y-space dg/dYi are 

dg/dY = £ dg/dUjidUj/dY) = £ oX] (dg/dX^dUj/dY (3.25) 
j=i j=i 

Using the same limit state equation with three random variables and 

Eqs. 3.21 and 3.25, the first gradient in y-space dg/dYi is 

dg/dY1   =   a1(dg/dX1)dU1/dY1 + a2(dg/dX2)dU2/dY1 + a3(dg/dX3)dU3/dY1 

dg/dY*   =   ^(dg/dX^n + ^idg/dX^n + a.idg/dX;)^ (3.26) 

All other steps shown in Section 3.4.1 remain the same. 

3.5.2   Uncorrelated Non-Normal Variables 
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The transformation from the x-space to the u-space for a normally 

distributed variable was shown in Eq. 3.13. Most variables are not normally 

distributed but an equivalent normal distribution can be created for a cor- 

responding non-normal distribution for a specific point on the failure surface 

X*. The equivalent normal distribution is valid only for that specific failure 

point. In an iterative process where a new failure point is being chosen for 

each trial, a new equivalent normal distribution must be created for each trial. 

Once the equivalent mean fj,Xi and equivalent standard deviation ax. have 

been computed, the solution process is the same as shown in Section 3.4.1. 

The transformation from the x-space to the u-space becomes 

Ui =    l ~/Xi i = l,2,...,n (3.27) 

The equivalent normal standard deviation ax. is computed [Ang and 

Tang 1984] as 

N _ *{*-x[FXi{x\)]} 
ax> -      fxM) (3-28) 

where FXi(x^) and fxi(x*) are the cumulative distribution function (CDF) and 

probability density function (PDF), respectively of the non-normal distribu- 

tion evaluated at the current point of failure X*. The symbols $(-) and </>(-) 

represent the CDF and PDF of the standard normal distribution, respectively. 

The equivalent normal mean value nx. is 

& = Xi - vZii^iFxtä)]} (3-29) 

Consider, for example, a problem where the non-normal distribution 

is the shifted-exponential distribution.   Assume the mean time to failure is 
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15 years so the number of occurrences per year is A = 1/15. Assume the 

offset time is a = 2 years. If the assumed failure point is X* = 4 years, 

the parameters of the equivalent normal distribution would be computed as 

follows. 

Fx{x*)   =   1 - e-A(**-<0 = 1 - e-1/15^-2) = 0.125 

^-\Fx(x*))   =   $~1(0.125) = -1.15 

(ftQ-^Fxix*))}   =   _Le-V2(-i.i5)' = 02059 
V27T 

fx(x*)   =   Xe'^"^ = l/löe-1/15^-2' = 0.05834 

N    _   ^-\Fx(x*))} _  0.2059 _ 
°x*   ~ fx(x*) ~ OÖ5834 " d-529 

//£.    =   X*-aAr$_1(Fx(x*)) = 4-3.529(-1.15) = 8.058 

(3.30) 

Once a new failure point is chosen, a new equivalent normal distribution must 

be computed. 

3.5.3   Correlated Non-Normal Variables 

If the random variables have non-normal distributions and are cor- 

related, the dependence between the variables could be expressed using con- 

ditional probabilities through the Rosenblatt transformation [Ang and Tang 

1984], but this is cumbersome. The Rosenblatt transformation can be avoided 

and the problem can be solved in the same manner as for correlated nor- 

mal distributions if equivalent correlation coefficients pfj can be found. Der 

Kiureghian and Liu [1986] developed approximate expressions for pfj for the 
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uniform, shifted exponential, shifted Rayleigh, Type-I largest value, Type-I 

smallest value, lognormal, gamma, Type-II largest value and Type-Ill small- 

est value distributions. Therefore, these are the distributions that are included 

in RELSYS. 

Der Kiureghian and Liu [1986] define the uniform, shifted expo- 

nential, shifted Rayleigh, Type-I largest and Type-I smallest distributions as 

Group 1 distributions. Similarly the lognormal, gamma, Type-II largest and 

Type-Ill smallest are Group 2 distributions. The equivalent correlation coef- 

ficient pfj is equal to the actual correlation between the two random variables 

Xi and Xj multiplied by a factor <p. 

Pii=PiA(P) (3.31) 

The factor ip is dependent on whether Xi and Xj are normal, Group 1, or 

Group 2 distributions. 

If Xi is normally distributed and Xj is a Group 1 distribution or 

vice versa, the factor ip is a constant. For example, if Xi is normal and Xj 

is uniform, then <p=1.023. If Xt is normally distributed and Xj is a Group 2 

distribution or vice versa, </? is a function of the coefficient of variation ö of 

the Group 2 distribution. For example, if Xi is normal and Xj is a gamma 

distribution, then 

ip = 1.001 - 0.007^- + 0.1185? (3.32) 

When Xi and Xj are both Group 1 distributions, ip is a function of 

the correlation p{j between them.   For example, if Xt is uniform and Xj is 
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Type-I largest, then 

ip = 1.064 - 0.069py + 0.005/??- (3.33) 

Similarly, if Xj is a Group 1 distribution and Xj is Group 2, then ip is a function 

of /fy- and <5j. If both variables are Group 2 distributions, (p is a function of 

Pij, 5j and 5j. If Xj is shifted-exponential and Xj is lognormal, then 

<£ = 1.098 + 0.003po- + 0M95j + 0.025pJ + 0.30385? - 0.437 PijSj      (3.34) 

If Xj is lognormal and Xj is Type-II largest, then 

<p   =   1.026+ 0.082po--0.019«Ji + 0.222(Ji + 0.018p?;- +0.2885? 

+0.3795? - O.Ulßijöi + 0.1266i6j - 0.277PijSj (3.35) 

The expressions for <p for all possible combinations of these distributions for Xj 

and Xj are listed in Der Kiureghian and Liu [1986], along with the maximum 

error associated with each. The program RELSYS uses these equations to 

compute the equivalent correlation coefficients pfj. 

3.5.4   Sensitivity Measures 

After the reliability of a structural component has been computed, it 

is useful to examine the sensitivity of the reliability with respect to the random 

variables which contribute to the uncertainty in the problem [Frangopol 1985, 

Karamchandani and Cornell 1992]. A sensitivity analysis will reveal which 

random variables are most worthy of continued study - where the reduced un- 

certainty will most improve the component reliability. A complete sensitivity 

analysis with respect to all random variables can be a tedious process. 
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Hohenbichler and Rackwitz [1986] showed that the direction cosines 

were good approximate measures of the stochastic importance of a random 

variable. The sensitivity sensßj with respect to the mean value of random 

variable Xj in component a is 

sensH = aaj (3.36) 

where aaj is the direction cosine with respect to the failure point of random 

variable Xj in the uncorrelated reduced space. These direction cosines were 

computed in Step 6 of the iterative solution process shown in Section 3.4.1. The 

sensitivity sensaj with respect to the standard deviation of random variable 

Xj is 

sensaj = -ßa2
aj (3.37) 

These sensitivity values are used in RELSYS. The validity of the sensitivity 

measures will be evaluated on an actual bridge example in Chapter 5. 

3.6   System Reliability 

The first-order approximation method describe herein is used to com- 

pute the reliability of a single component. A structural system can have mul- 

tiple components. Failure of a single component (series system) may cause 

failure of the entire system or the system may have redundancies where multi- 

ple components must fail (parallel system) for the system to fail. The interre- 

lationship of the failure components is important in evaluating the reliability 

of an entire system. When describing system reliability, it is often difficult 

to determine whether a subscript in an equation is referring to a component 
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or a random variable - particularly regarding correlation coefficients and di- 

rection cosines. The convention used in this study is to reserve subscripts 

(i,j, k,..., n) for random variables. The remaining subscripts (a, b,c,... ,h) 

and (o,..., z) are used for components. 

3.6.1   Series Structures - Probability of Failure 

While a structure can consist of just one member, it is usually com- 

prised of a system of members. If the failure of a single member will lead to the 

failure of the entire structure, the system is considered a series structure. If a 

structural system is treated as a series system of z elements, the probability 

of failure Pf can be written as the probability of a union of events 

Pf   =   f(UM<0}) (3-38) 

To calculate the exact reliability of a structure with many mem- 

bers can be cumbersome process involving multiple integrals and necessary 

approximations. A more practical approach is to compute the lower and up- 

per bounds on the reliability of the series system. The uni-modal or Cornell 

bounds are formed by considering the cases where the correlation between the 

failure modes (as described by the limit state equations) is either zero or one. 

Assuming the probability of failure for each individual element is known, the 

upper bound is calculated by assuming that all of the members are statistically 

independent (psySab = 0). The survival of the structure, which is the intersec- 

tion of all members surviving, is equal to the product of the probabilities of 
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each member surviving. Therefore, the upper bound failure for the overall 

structure is equal to: 

PuPper = I ~ f[(l ~ Pf(a)) (3.39) 
<j=l 

A lower bound can be calculated by assuming perfect correlation between 

the members (psySab = !)• In this case, if one member survives, then all 

members will survive, so the member with the least chance of survival (largest 

probability of failure) is identified. The lower bound indicates that, at best, 

the series structure is only as strong as its weakest member. Therefore: 

Pflomr=max[Pf(a)] (3.40) 

A set of bounds on the probability of failure for a series structure can be 

expressed as: 

Pf(a)maX<Pf<l-f[(l-Pf(a)) (3.41) 
a=l 

In many cases, the interval between these bounds can be very large. Ditlevsen 

[1979] developed tighter bounds which account for the actual correlation be- 

tween the members of the series system. The lower bound can be written 

as: 

Pfu^r = P(F±) + E max[P(Fa) - 2(P(Fa n Fb); 0] (3.42) 
a=2 6=1 

The lower bound is based on considering only the individual component prob- 

abilities, P{Fa), and all possible combinations of joint probabilities involving 

two members, P(Faf]Fb). By neglecting joint probabilities involving three or 

more members (i.e., P(Faf]Fbf]Fc)), which are more difficult to calculate, a 
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lower bound is assured. The upper bound for the probability of the system 

failure can be written as 

Pfupper = i:P(Fa)-    £   max[P(Fbf]Fa)} (3.43) 
a=l a=2,6<a 

The upper bound also considers only the individual probabilities and the joint 

probabilities involving two members. The upper bound is computed by se- 

lectively excluding certain two-member joint probabilities. The best bounds 

are obtained by rank ordering the failure events, (i<\, ...,FZ) from the highest 

probability of failure to lowest [Melchers, 1987]. The actual probability of fail- 

ure of the structure falls within these bounds and as the correlation between 

the members increases, the reliability of the system increases. 

The individual component reliabilities in the Ditlevsen bounds P{Fa) 

are computed using the algorithm described in Section 3.4.1. The two-member 

joint probability P(Fa f) Fb) is computed by numerically integrating the bivari- 

ate normal distribution function: 

oo oo 

(3.44) 

where ßa and ßb are the reliability indices associated with P(Fa) and P{Fb), 

respectively, and psysab is the correlation between component failure events Fa 

and Fb. 

The correlation between the random variables within each limit state 

function is known and was used to calculate the reliabilities of the individual 

components.   The correlation between the components which comprise the 
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system has to be developed. This is done using the direction cosines (a^-) 

associated with each random variable of each component. While ß provides the 

shortest distance from the origin to the failure surface which is the magnitude 

of the reliability vector, the direction cosines (a* ) provide the contribution 

to the direction of the reliability vector from each random variable. Using 

this notation, a* is the direction cosine at the most probable point of failure, 

j is the random variable whose contribution is being evaluated, and a is the 

component under consideration. 

As shown in Fig. 3.4, the correlation coefficient between any two com- 

ponents (pSysab) is equal to the cosine of the angle between the two reliability 

vectors associated with a and b. This can be calculated using the direction 

cosines {o*aj): 

Psysa 

Cov(a, b)       " 
5>: ,kabk oaoh k=l 

A system correlation matrix psys can now be assembled: 

(3.45) 

/ 

Psys 

Psysu     Psysi2     ' ' '     Psysiz 

Psys2i     Psys22     ' ' '    Psys2z 

Psysz 

\ 

(3.46) 

y rsyszi     ysysz2 Hsyszz    I 

With the system correlation matrix psys and the component reliabil- 

ities ßa, ßb, ...ßz, the Ditlevsen bounds for a series system can be calculated 

using Eqns. 3.42 and 3.43. The reliability of the series system is the average 
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Figure 3.4: Correlation Between Two Failure Modes 

of the Ditlevsen bounds for that system. 

n         Plower   '   Pupper 
Psys — ~ (3.47) 

3.6.2   Series System Example 

Consider the following series system comprised of three failure com- 

ponents as described by limit state equations g(l), g(2), and g(3). 

g(l) = 2Xf - 2X2 

g(2) = X1-X3 

0(3) = 1.5Xi + 0.5X1 -X2 

The system fails if any of the three components fail as modeled in Fig. 3.5. The 

random variables Xx, X2, and X3 are uncorrelated and normally distributed. 

The parameters for these variables are shown in Table 3.2. 



Table 3.2: Random Variables Xu X2, and X3 

Variable Mean Value Standard Deviation Distribution 

Xi 

x2 

x3 

2.0 

3.0 

1.0 

0.2 

0.3 

0.1 

Normal 

Normal 

Normal 
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g(l)        g(2)        g(3) 

Figure 3.5: Series Model of g(l), g(2), and g(3) 

Note that g(l) is the same component analyzed in Section 3.4.1. 

Table 3.3 shows the component reliability results and direction cosines at the 

point of failure for components <7(1), g(2), and g(3). 

Table 3.3: Component Reliability Results for g(l), g(2), and g(3). 

Component ß Pf Ps <i aa2 <3 

g(l) 

g(2) 

g(3) 

1.2317 

4.4721 

1.1479 

0.1090 

0.3875E-5 

0.1255 

0.8910 

1.0 

0.8750 

0.9210 

0.8944 

0.6892 

-0.3896 

0.0 

-0.6892 

0.0 

-0.4472 

0.2238 

The upper and lower unimodal bounds which are based on no cor- 

relation and perfect correlation between failure modes, respectively can be 
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computed directly. 

z 

PfupPer   =   l-n(1-p/(«)) = 1-(0-8910)(1.0)(0.8750) = 0.2286 
Q=l 

pfioWer   =   rnax[Pf(a)} = max[0.1090, 0.3875£ - 5, 0.1255] = 0.1255 

(3.48) 

The upper and lower bi-modal bounds require the correlation be- 

tween failure modes to be computed. 

n 

Psysa,b     =     J2 a*ak<4k 
k=l 

Psysi2     =     ^ll^l + Q;12Q;22 + a13a23 

=   0.9210(0.8944) + (-0.3896)(0.0) + 0.0(-0.4472) = 0.8238 

Psys13   =   ®*na*31 + a*l2a*32 + a*l3a*33 

=   0.9210(0.6892) + (-0.3896)(-0.6892) + 0(0.2238) = 0.9033 

Psys23   =   Oi*2la*31 + a*22a*32 + a*23a*33 

=   0.8944(0.6892) + 0(-0.6892) + (-0.4472)(0.2238) = 0.5163 

(3.49) 

Using these failure mode correlation coefficients and Eq. 3.44, the 

joint probabilities P[g(l) n<?(2)], P\g{l){\g(Z)}, and P[g{2){\g(S)] are com- 

puted. The results are shown in Table 3.4. 

To obtain the narrowest bounds, the three events g(l), p(2), and g(3) 

are rank ordered from the highest probability of failure to the lowest as shown 

in Table 3.5. By applying these rank ordered results to Eqs. 3.42 and 3.43, 

the upper and lower bimodal bounds Pfupper and PfloweT can be computed. 
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Table 3.4: Joint Probability Results for g(l), g(2), and g(3). 

Joint Distribution ßa ßb PsySab 
p 

fsys Psys 

g(i)f)g(2) 

0(i)n<K3) 

0(2)n0(3) 

1.2317 

1.2317 

4.4721 

4.4721 

1.1479 

1.1479 

0.8238 

0.9033 

0.5163 

3.873E-06 

0.08226 

3.599E-06 

4.4719 

1.4690 

4.4877 

Pf, 

Pf 

P(Fx) + P(F2) - P(F2f]F1) + P(F3) - P(F3f]F2) - P^fl^i) 

0.1255 + 0.1090 - 0.08226 + 3.875(10"6) - 3.599(10-6) - 3.873(10"6) 

0.1522 

P(Fx) + P(F2) + P{F3) - max[P(F2 f| F,)} 

-max[P(F3f] F2),P(F3f)F1)] 

0.1255 + 0.1090 + 3.875(10"6) - max[0.08226] 

-max[3.599(10-6), 3.873(10~6)] = 0.1522 (3.50) 

RELSYS computes the probability of failure of this series system as 

the average of these upper and lower bimodal bounds. In this case, the upper 

and lower bounds are the same to four decimal places and Pfs s = 0.1522. The 

Ditlevsen bounds are furthest apart when the series system contains a large 

number of members with relatively equal probabilities of failure. This series 



131 

Table 3.5: Rank Ordering of g(l), g(2), and #(3). 

Ordered Event Original Event Pf 
F1 <?(3) 0.1255 

F2 P(l) 0.1090 

F3 ä(2) 3.875E-06 

FiC\F2 g(3)f]g(i) 0.08226 

FiHFs P(3)D5(2) 3.599E-06 

F2f]F3 «Kl) n s(2) 3.873E-06 

system is Example 5 in the RELSYS User's Manual (Appendix A). 

3.6.3   Parallel Structures   -  Probability of Failure 

If the remaining members of a structure will continue to carry the 

required loads when a single member fails, the system is considered a parallel 

structure. The upper and lower unimodal bounds for the probability of failure 

for a ductile parallel structure are easily established. Brittle systems, which 

cannot redistribute loads between members like a ductile system, are usually 

modeled as series systems. 

If the structural system is modeled as a parallel system, the proba- 

bility of failure of this system Pf can be written as a probability of intersection 

of events: 

Pf     =     P [  f] i9a(X) < 0} (3.51) 
\a=l 

where z is the number of elements which have to fail in order to cause system 

failure. 
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A lower bound failure probability is found by assuming statistical 

independence {pSysab = 0) between the structural members. The probability 

of the structure failing is equal to the product of the individual failure proba- 

bilities of members. Therefore, 

Pflower = f[(l - Pf(*)) (3-52) 
a=l 

The upper bound is calculated when there is perfect correlation between the 

members (psysab — 1-0). The structure will be at least as strong as its strongest 

member. The member with the lowest Pf value provides the upper bound for 

the probability of failure for the structure. 

Jup i[Pf(a)} (3.53) 

A set of bounds on the probability of failure of a parallel structure can be 

expressed as: 

n(l - Pf(a)) <Pf< min[Pf{a)} (3.54) 
a=l 

In contrast to the series system, the reliability of a parallel system decreases 

with increased member correlation. For parallel systems, there is no equivalent 

to the Ditlevsen bounds and the bounds listed above are often too wide to be 

useful. 

Since this first-order approach to solving the component reliability 

problem reduces all random variables to equivalent normal distributions, a 

solution to the parallel system can be found by solving the n-dimensional joint 

standardized distribution integral [Thoft-Christensen and Murotsu 1986]. 
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oo oo oo 

(3.55) 

where {ß} = {ßa, A,, • • •, ßz}, Psys is the system correlation matrix, and z is 

the number of members in the parallel system. 

3.6.3.1   Bivariate Normal Distribution 

For a two-member parallel system, Eq. 3.55 reduces to the bivariate 

normal distribution shown in Eq. 3.44. Several numerical approximations of 

the bivariate normal distribution were attempted using Composite Simpson's 

rule [Burden and Faires 1993], the Hohenbichler approximation [Hohenbichler 

and Rackwitz 1983], and Gaussian quadrature with 5, 11, 25, and 51 Gauss 

points [Stroud and Secrest 1966]. The Hohenbichler approximation uses con- 

ditional probability to successively reduce the dimension of a multi-normal 

integral by one dimension for every iteration until it is reduced to a single 

integral. A recursive algorithm is then used to reverse the process and solve 

the multi-dimensional integral [Thoft-Christensen and Murotsu 1986]. Ta- 

bles 3.6 and 3.7 show the results for the system reliability index ßsys and the 

system probability of failure Pfsys using all of these methods for various two- 

member parallel systems. All of the methods, with the exception of Gaussian 

quadrature using only five Gauss points, yield approximately the same results. 

RELSYS uses the Composite Simpson's rule to solve this integral. 
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Table 3.6: Bivariate Normal Distribution Approximations (ß) 

ßl Ä Pl,2 Simpson's Hohenb. Gauss 5 Gauss 11 Gauss 25 Gauss 51 

2.5 2.5 0.2 3.6136 3.6137 3.6077 3.6136 3.6136 3.6136 

2.5 4.5 0.4 4.7855 4.7880 4.7920 4.7856 4.7856 4.7856 

2.5 3.6 0.6 3.8282 3.8286 3.8314 3.8282 3.8282 3.8282 

4.0 2.5 0.6 4.1535 4.1539 4.1638 4.1535 4.1535 4.1535 

3.0 3.0 0.7 3.5032 3.5031 3.4881 3.5032 3.5032 3.5032 

2.5 4.5 0.8 4.5042 4.5046 4.4942 4.5041 4.5042 4.5042 

4.0 4.0 0.8 4.4142 4.4135 4.4008 4.4142 4.4142 4.4142 

2.5 3.0 0.9 3.0597 3.0596 3.0716 3.0597 3.0596 3.0596 

4.5 2.5 0.9 4.4998 4.4998 4.4100 4.4973 4.4999 4.4999 
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Table 3.7: Bivariate Normal Distribution Approximations (Pf ■ 10 3) 

ßl Ä Pi ,2 Simpson's Hohenb. Gauss 5 Gauss 11 Gauss 25 Gauss 51 

2.5 2.5 0.2 .1511 .1510 .1545 .1511 .1511 .1511 

2.5 4.5 0.4 .0008520 .0008431 .0008249 .0008519 .0008519 .0008519 

2.5 3.6 0.6 .06456 .06446 .06372 .06456 .06456 .06456 

4.0 2.5 0.6 .01637 .01635 .01565 .01637 .01637 .01637 

3.0 3.0 0.7 .2300 .2300 .2434 .2300 .2300 .2300 

2.5 4.5 0.8 .003330 .003328 .003490 .003330 .003329 .003329 

4.0 4.0 0.8 .005068 .005090 .005391 .005068 .005068 .005068 

2.5 3.0 0.9 1.109 1.108 1.066 1.109 1.109 1.109 

4.5 2.5 0.9 .003398 .003404 .005166 .003440 .003397 .003397 
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3.6.3.2   Trivariate Normal Distribution 

The trivariate normal distribution is used to compute the reliability 

of a three-member parallel system. The trivariate normal distribution can be 

expressed as: 

OO   OO  CO 

P(F1 f| F2 n F3) = J11 Mßufo, ß3; [Psys])dßcdßbdßa (3.56) 
ßl  ß2  ßi 

where: 

h(ßl,ß2,ß3-,[Psys]) = ze[-l/2{ßuß2,ß3}[psy3]-i{ßuß2,ß3}T]      ,357x 

(27v)^^t[p~sysi 

in which [pSyS} is the correlation coefficient matrix of {ßi,ß2,ß3} given by: 

Pll     Pl2     Pl3 

[P sys] 

V / 

P2l     P22     P23 

P31     P32     P33 

and the inverse of the correlation matrix is: 

1       Pl2     Pl3 

Pl2       1       P23 

,   Pl3     P23       1     j 

[Psysl — det[psys 

1.0 - pj3 -pu + P13P23     -Pl3 + P12P23 

P12 + P13P23       1-0 - p\z       -P23 + P12P13 

Pl3 + P12P23     -P23 + Pl2Pl3 1-0 - p\2        J 

and where: 

det[psys] = 1.0 + Pi2p23pi3(2.0) - p\2 - p2
13 - p2

23 (3.58) 
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The approximate solution of the trivariate normal distribution was 

investigated using Gaussian quadrature with 5, 11, 25, and 51 Gauss points; 

the Hohenbichler approximation; and a lower bound solution proposed by Ra- 

machandran [1986]. This lower bound solution of P(Fi f] Fj f] Fk) is developed 

using only the intersection of two events: 

m n F, n Ft) > PWnggW.) (3.59) 

Tables 3.8 and 3.9 show the system reliability indices and probabilities of fail- 

ure for several three-member parallel structures using all listed approximate 

methods. If psySab < 0.9 for all of the correlation coefficients, then the Gaus- 

sian quadrature using 11 Gauss points provides results that are close to the 

exact solution. If any member correlation is greater than 0.9, better results 

are achieved with 25 Gauss points. Raising the number of Gauss points to 

51 requires greater computational effort but does not appear to significantly 

improve the results. For the reliability of a three-member parallel system, 

RELSYS numerically integrates the trivariate normal distribution using Gaus- 

sian quadrature with 11 Gauss points if psySab < 0.9 and 25 Gauss points if 

Psysab > 0.9. 

For parallel systems with four members of more, the number of com- 

putations to numerically integrate the multinormal distribution becomes too 

large and the Hohenbichler approximation is used. The Hohenbichler approx- 

imation is solved using a FORTRAN 77 subroutine provided to the author 

by S^rensen [1987]. The Hohenbichler approximation works best for failure 

events that are perfectly correlated or independent.  The accuracy is less for 



138 

Table 3.8: Trivariate Normal Distribution Approximations (/?) 

ßl Ä Ä Pl,2 Pl,3 P2,3 Ramach. Hohenb Exact 

2.78 3.28 3.81 0.61 0.87 0.67 4.19 4.20 4.18 

1.77 2.16 3.47 0.39 0.93 0.08 4.32 4.51 4.32 

2.26 2.64 3.68 0.46 0.78 0.12 4.67 4.80 4.64 

1.92 2.10 1.63 0.99 0.35 0.27 2.78 2.78 2.77 

1.67 1.72 1.39 0.75 0.32 0.80 2.62 2.33 2.33 

0.38 0.40 0.93 0.54 0.26 0.82 1.42 1.37 1.37 

2.99 2.61 2.38 0.64 0.56 0.98 3.57 3.41 3.41 

0.62 0.03 1.38 0.12 0.22 0.30 1.97 1.96 1.95 

3.59 4.03 1.53 0.25 0.39 0.59 5.17 5.12 5.12 

A A Ä Pl,2 Pi ,3 P2,3 Gauss 5 Gauss 11 Gauss 25 Gauss 51 

2.78 3.28 3.81 0.61 0.87 0.67 4.22 4.18 4.18 4.18 

1.77 2.16 3.47 0.39 0.93 0.08 4.92 4.39 4.31 4.31 

2.26 2.64 3.68 0.46 0.78 0.12 4.57 4.65 4.65 4.65 

1.92 2.10 1.63 0.99 0.35 0.27 3.20 2.89 2.76 2.77 

1.67 1.72 1.39 0.75 0.32 0.80 2.24 2.33 2.33 2.33 

0.38 0.40 0.93 0.54 0.26 0.82 1.52 1.37 1.37 1.37 

2.99 2.61 2.38 0.64 0.56 0.98 3.16 3.36 3.41 3.41 

0.62 0.03 1.38 0.12 0.22 0.30 1.98 1.96 1.96 1.96 

3.59 4.03 1.53 0.25 0.39 0.59 5.13 5.16 5.16 5.16 



139 

Table 3.9:    Trivariate Normal Distribution Approximations (Pf 

lO"3) 

ßl Ä Ä Pl,2 Pl,3 P2,3 Ramach. Hohenb Exact 

2.78 3.28 3.81 0.61 0.87 0.67 .0141 .0136 .0144 

1.77 2.16 3.47 0.39 0.93 0.08 .0077 .0033 .0078 

2.26 2.64 3.68 0.46 0.78 0.12 .0015 .00080 .0017 

1.92 2.10 1.63 0.99 0.35 0.27 2.750 2.777 2.790 

1.67 1.72 1.39 0.75 0.32 0.80 4.350 9.951 10.000 

0.38 0.40 0.93 0.54 0.26 0.82 78.47 85.72 86.03 

2.99 2.61 2.38 0.64 0.56 0.98 0.180 0.319 0.320 

0.62 0.03 1.38 0.12 0.22 0.30 24.22 25.14 25.67 

3.59 4.03 1.53 0.25 0.39 0.59 .00012 .00015 .00015 

ßi Ä ßs Pl,2 Pl,3 P2,3 Gauss 5 Gauss 11 Gauss 25 Gauss 51 

2.78 3.28 3.81 0.61 0.87 0.67 .0123 .0148 .0148 .0148 

1.77 2.16 3.47 0.39 0.93 0.08 .00044 .00057 .00081 .00080 

2.26 2.64 3.68 0.46 0.78 0.12 .0024 .0017 .0017 .0017 

1.92 2.10 1.63 0.99 0.35 0.27 .676 1.932 2.852 2.841 

1.67 1.72 1.39 0.75 0.32 0.80 12.593 9.994 9.980 9.980 

0.38 0.40 0.93 0.54 0.26 0.82 64.59 85.74 85.68 85.68 

2.99 2.61 2.38 0.64 0.56 0.98 0.790 0.388 0.320 0.319 

0.62 0.03 1.38 0.12 0.22 0.30 24.03 25.18 25.18 25.18 

3.59 4.03 1.53 0.25 0.39 0.59 .00014 .00013 .00013 .00013 
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events with medium dependencies. The approximation has the largest error if 

the probabilities of failure are the same and the correlation between events is 

also the same. As expected, the error also increases as the number of members 

in the parallel system increases [Hohenbichler and Rackwitz 1983]. The accu- 

racy is best when the individual component ß values are rank-ordered from 

smallest to largest [Ditlevsen and Madsen 1996]. 

3.6.4   General Systems 

A general system can be modeled as any combination of series and 

parallel systems. Consider a series system consisting of y parallel systems. 

Each parallel system a has za components. Then, the probability of failure is 

given as: 

pf  = P(U n{a*(*)<o}) (3.60) 
\a=l6=1 / 

The reliability of a series system and a parallel system can be solved 

separately using the reliabilities and the direction cosines at the point of failure 

of the individual components. The approach for a complex system will be 

to sequentially break the system down into simpler equivalent subsystems. 

The example series-parallel system in Fig. 3.6 illustrates how the equivalent 

components are created and the system is simplified until a single system 

reliability index can be calculated. The original problem consists of six limit 

state equations g(l) = 0 through g(6) — 0 and the reliability of each can 

be calculated using the FORM described earlier. Using the direction cosines 
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associated with the most probable points of failure for each limit state, the 

system correlation matrix is calculated. 

Figure 3.6:    Reduction of a Series-Parallel System to an Equiva- 

lent Series System 

Using the trivariate normal distribution (Eq. 3.57), the reliability of 

the parallel system comprised of g(2), g(3), and g(A) is found and an equiv- 

alent component g(7) is created. Similarly, the bivariate normal distribution 
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(Eq. 3.44) is used to find the reliability of the two-member parallel system of 

g(i) and g(6), and create the equivalent component g(8). The intermediate 

result is a series system of components g(l), g(7), <?(5), and g(8). The equiva- 

lent single component #(9) is the average of the bimodal bounds for this series 

system. Since the reliability of a system is dependent on the correlation of the 

individual members of the system, the equivalent correlation of the equivalent 

components must be included. 

3.6.4.1   Equivalent Alpha Vectors 

The equivalent correlation coefficients psys-equivab that are associated 

with the equivalent components created in the system analysis are a function 

of equivalent alpha vectors of equivalent direction cosines associated with each 

random variable in the sub-system analysis, 

n 

Psys-equivab —  / , aepuivnk
aeauiVhic (o.blj 

k=l 

where aequiVak is the equivalent direction cosine for equivalent component a 

with respect to random variable k. Just as with Eq. 3.18, the equivalent direc- 

tion cosines are a function of the gradients. The gradient under consideration 

however is the change in the system reliability with respect to each random 

variable in the system -gk*1 

a, 

) ' 

_ d(ßsys)/d(Xk) 
equivak 

■M d(Xi) ) 

(3.62) 

j=i 

The gradients   l^y  are computed by using the direction cosines 

associated with each component a*ak in a system to individually assess the 
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effect of each random variable on the reliability of the system. The effect 

or sensitivity of the system reliability with respect to each random variable 

becomes the equivalent direction cosine for that random variable. Consider 

random variable Xk for a series or parallel system with z components. The 

reliability index associated with an individual component ßa are varied by 

a small amount ßak which is an arbitrary small constant ip multiplied the 

direction cosine a*ak. 

ßak     =     ßa + lpKk) 

ßbk   =   ßb + ip(a*bk) 

ßzk   =   ßz + ^(a*zk) (3.63) 

Using these altered reliability indices and the original system corre- 

lation matrix psys, the revised system reliability index for the series or parallel 

system ßsySnew(k) with respect to the random variable Xk is computed. The 

system gradient with respect to Xk is computed as 

djßsys)  _ Psys       Psysnew{k) 

d(xk) ~        v (3.64) 

This process is completed with respect to the rest of the random 

variables in the system from which the remainder of the system gradients are 

computed. Eq. 3.62 uses these gradients to create the equivalent alpha vectors 

and Eq. 3.61 computes the equivalent correlation coefficients. 

3.6.4.2   General System Example 
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Consider the following general series-parallel system shown in Fig. 3.7 

containing the same three failure components 1, 2, and 3 represented by the 

limit state equations g(l), <?(2), and g(3) used in earlier examples. 

<7(1)   =   2^-2*2 

g(2)   =   X,-X3 

0(3)   =   1.5X1 + 0.5X3
2 - X2 (3.65) 

The general system is a parallel system of components 1 and 3 in 

series with component 1, in series with a parallel combination of components 

1, 2, and 3. The parameters of random variables Xi, X2, and X3 are listed 

in Table 3.2 and the direction cosines and reliability associated with each 

component is shown in Table 3.3. 

Considering the parallel system of components 1 and 3, Eq. 3.49 uses 

the direction cosines a*ak to compute the system correlation coefficient psysi3 = 

0.9033. The bivariate normal distribution (Eq. 3.44) is used to compute the 

reliability of the parallel system ßsys = 1.3902 for ft = 1.2317, ß3 = 1.1479, 

and psysi3 = 0.9033. 

The effect of random variable X\ on the system reliability is consid- 

ered first. Setting tp = 0.001, the adjusted component reliabilities based on 

the sensitivity of Xi are: 

ßn   =   ßi ~ V>Ki) = 1-2317 + 0.001(0.9210) = 1.2326 

#2i   =   fo- ^(<*2i) = L1479 + 0.001(0.6892) = 1.1485        (3.66) 
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1 

Figure 3.7:    Reduction of a Series-Parallel System to an Equiva- 

lent Single Component 
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Solving the bivariate normal distribution where ßn = 1.2326, ß2\ = 1.1479 

and Psysu 2i = 0.9033 yields ßsysnewm = 1-3911. Table 3.10 shows the results 

for ßu, /?2i, and ßSysnew{i) f°r random variables X2 and X3. 

Table 3.10: Adjusted System Reliabilities For Two Member Par- 

allel System Based on the Sensitivities With Respect 

to the Random Variables Xi, X2, and X3 

Random 

Variable 

Component 1 Component 2 System 

"ii ßu «2i ki PsySnew(i) 

x1 

x2 

Xz 

0.9210 

-0.3896 

0.0 

1.2326 

1.2313 

1.2317 

0.6892 

-0.6892 

0.2238 

1.1485 

1.1472 

1.1481 

1.3911 

1.3897 

1.3903 

The gradients of the system reliability with respect to each random 

variable are: 

d(ßsys)    _   ßsys ~ ßsysnew{1) _ 1.3902-1.3911 
d(X1) V 
d(ßSys) _ 1.3902 - 1.3897 
d{X2) ~ ÖÄÖl 
d{ßays) _ 1.3902 - 1.3903 

0.001 

= -0.5286 

= 0.0989 

= 0.8344 

(3.67) 
d(X3) 0.001 

Using Eq. 3.62, the equivalent direction cosines aequiVak which make up the 

equivalent alpha vector for equivalent component 4 are 

0.8344 0.8344 
a, equivn 

^(0.8344)2 + (-0.5286)2 + (0.0996)2      °-9855 

-0.5286 

0.8405 

OL, equiV42 0.9855 
-0.5325 
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0.0989     nnn , 
VecuivM     =     5^^ = 0-0996 (3-68) 

This equivalent alpha vector can be used to compute the equivalent correlation 

coefficients between component 4 and any of the other components in the 

system. The reliabilities of the two components 1 (ßi = 1.2317) and 3 (ß3 = 

1.1479) are relatively equal and each have relatively equal contributions to the 

reliability of the system. The equivalent direction cosines for each random 

variable in this case are close to the average of the individual direction cosines 

for each component. 

The parallel system consisting of components 1,2, and 3 is reduced 

to equivalent component 5 in a similar manner. Eq. 3.49 provides the system 

correlation coefficients psySl2 = 0.8238, psysi3 = 0.9033, psyS23 = 0.5163 from 

which the system correlation matrix psys is created. The reliability of the par- 

allel system ßsys = 4.488 is computed from the trivariate normal distribution 

(Eq. 3.57) using psys and ß = {ßufafo} = {1.2317,4.4721,1.1479}. Table 

3.11 shows the adjusted reliabilities of the components based on the sensitivi- 

ties of the random variables and the resulting equivalent alpha vector for the 

three-member parallel system. 

In this three-member system, component 2 has a much higher relia- 

bility than the other two members and has the dominant effect on the reliability 

of the system. The equivalent direction cosines are likewise dominated by the 

component 2. 

The system has been reduced to an equivalent three-member series 

system of components 1, 4, and 5. The reliabilities and direction cosines for 
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Table 3.11: Adjusted System Reliabilities For Three Member 

Parallel System Based on the Sensitivities of the 

Random Variables Xi, X2, and X3 

Ran. 

Var. 

Comp. 1 Comp. 2 Comp. 3 System 

ßu hi AK PsySnew(i) Psys 
d(ßsys) 
d(Xi) ®-equiv$i 

xx 

x2 

1.2326 

1.2313 

1.2317 

4.4730 

4.4721 

4.4717 

1.1485 

1.1472 

1.1480 

4.4891 

4.4882 

4.4878 

4.4882 

4.4882 

4.4882 

0.8885 

-0.0174 

-0.4248 

0.9020 

-0.0177 

-0.4313 

these three components are shown in Table 3.12 which is very similar to Table 

3.3. The series system is solved in the same manner as shown in Section 3.6.2. 

The direction cosines are used to compute the system correlation coefficients. 

The component reliabilities and correlation coefficients are substituted into the 

bivariate normal distribution integral (Eq. 3.44) to compute all two-event joint 

probabilities. The upper and lower bimodal bounds are computed. For the 

series system of components 1, 4, and 5, the Ditlevsen bounds were Pt       = u ■*■ ill jupper 

0.11281 and Pfl      = 0.11281. 

Table 3.12: Results for Components 1, 4, and 5 

Component ß Pf Ps <i <2 <3 

1 1.2317 0.1090 0.8910 0.9210 -0.3896 0.0 

4 1.3902 0.0827 0.9173 0.8405 -0.5325 -0.0996 

5 4.4882 0.3598E-05 1.0 0.9020 -0.0177 -0.4313 
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Using the average of the bi-modal bounds, the reliability index of 

equivalent component 6 and thus the reliability of the system is ßsys = 1.2119. 

The equivalent alpha vector could be computed in the same manner based on 

the contribution of the random variables to the system reliability, but there is 

no need since the solution is complete. RELSYS uses this method to break any 

system which can be modeled as a series-parallel combination of the individual 

components into successively smaller equivalent systems, until only a single 

equivalent component is remaining. This general system is Example 8 in the 

RELSYS User's Manual (Appendix A). 

The approximate FORM approach described herein is very effective 

in many cases and provides good results with minimum computational effort. 

Until this method was developed, the most popular estimation methods for 

such analysis was Monte Carlo simulation [De and Cornell, 1990] which has 

some serious limitations, particularly for problems that will be executed many 

times. 

3.7   Monte Carlo Simulation 

Because of the difficulty in calculating the integral in Eq. 3.11, the 

previous inadequacy of the bounds for the parallel system, and the difficulty 

in calculating the effect of correlation in higher order systems, the technique 

of last resort has been Monte Carlo simulation. Rather than facing the math- 

ematical complexities of the problem, Monte Carlo simulation generates the 

random variables that appear in the problem, transforms them to the as- 

sumed probability distribution, and evaluates the functions which constitute 
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the model a sufficient number of times to generate a credible answer. For a 

given limit state equation, g(x) = 0, the probability of failure (Pf) is calculated 

as: 

Pf = nj/n (3.69) 

where n is the number of times the simulation is run and rif is the number of 

times that g(x) > 0 was not true. 

Monte Carlo simulation experiences some degree of sampling prob- 

lems unless the sample size is infinitely large. As the number of simulations 

becomes greater, the standard deviation of the probability of failure becomes 

less. Monte Carlo simulation can require large amounts of computer time par- 

ticularly if the event is rare. The larger the probability of failure, the larger the 

number of simulations required to obtain a reasonable solution. The number of 

iterations required is based on the acceptable percent error. One relationship 

[Ang and Tang, 1984] is: 

% error = 200 
^ 

[l     Pf) (3.70) 
n(Pf) 

Another general rule of thumb [Harbitz, 1986] is that the number of iterations 

required to obtain a reasonable error (i.e. roughly 30%) is: 

n = 10/Pf (3.71) 

Structures are designed so that failure is necessarily a rare event. With most 

structures having reliability indices around ß = 3 or ß — 4 and some individual 

components of a structure having reliability indices of ß = 7 or ß = 8, it is 

common that millions and sometimes billions of simulations are required for 
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each calculation. When the system reliability calculation will be made many 

times to account for the entire life of the structure, the Monte Carlo method, 

while accurate, requires too much time to be useful. 

3.8   RELSYS 

RELSYS (Reliability of Systems) is a FORTRAN 77 program writ- 

ten by the author which calculates the reliability of any structure which can 

be modeled as a combination of series and parallel structures. The program 

uses the average of the Ditlevsen bounds for series systems, numerical inte- 

gration of the multi-normal distribution for two and three-member systems, 

the Hohenbichler approximation for larger parallel systems, and correlation 

coefficients based on equivalent alpha vectors to calculate the system reliabil- 

ity index. The algorithm reduces the various series and parallel systems to 

equivalent single components, gradually reducing the entire system to a single 

simplified component. The program is divided into four parts: 

relsys.f: The program shell which reads the input file and calls the subrou- 

tines which will calculate the system reliability. The purpose of this shell is to 

create an environment which allows the user to repeatedly calculate the relia- 

bility of the structure and to define the problem to be solved. Specifically for 

a highway bridge, the shell defines the cost data, the deterioration functions, 

the number of lifetime inspections, and the minimum acceptable reliability. It 

contains the aspects of the problem that do not involve the reliability calcula- 

tions; 

subrel.f:   Main program for reliability calculation. It acts as the switchboard 
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which calls the necessary subroutines to calculate reliability; 

subrell.f:    Contains all subroutines for calculating the reliability of individ- 

ual components; and 

subrel2.f:    Contains all subroutines for calculating the system reliability. 

3.9   Testing RELSYS 

The results of RELSYS were compared with those obtained by the 

Monte Carlo simulation programs MCREL and CALREL for the same prob- 

lems. 

3.9.1   Parallel Systems 

The first comparison was made on two-bar, three-bar, four-bar, and 

five-bar parallel systems as shown in Figure 3.8. In each case, the sum of the 

mean resistances of the members was 1.5 times as great as the mean load. 

Therefore, the System Safety Factor (SSF) of 1.5 was fixed. The Resistance 

Sharing Factor (RSF) which describes the relative stiffness of the bars for each 

system is RSF = 1/n where n is the number of bars in the system. The bars 

have equal stiffnesses and therefore initially take an equal share of the load 

P. The coefficient of variation for all random variables (i.e., load and bar 

resistances) was 8 = .10 and the correlation of the bar resistances was varied 

between pR^ = 0.0 (statistically independent) and PR{R- =1.0 (perfectly 

correlated). The comparison was made on structures which were balanced, 

25% unbalanced, and 50% unbalanced. In this context, a balanced system is 

one where the mean resistances of all bars are equal. The degree of unbalance 
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2 Bar System 3 Bar System 

4 Bar System 5 Bar System 

Figure 3.8: Parallel Systems With Two, Three, Four, and Five Bars 
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is computed based on the relative difference between the strongest and weakest 

member of the parallel system. The degree of unbalanced is calculated as [De 

and Cornell, 1990]: 

% Unbalance = 1 - /iflweafcest (3.72) 
i   ^-Strongest 

The elastic modulus, area, and length of all bars were the same which provided 

an equal distribution of the load to all members. Table 3.13 shows the mean 

resistances in each bar for the two, three, four, and five-bar systems which are 

0%, 25%, and 50% unbalanced. In each case, the mean value of the load is 

/ip = 1.0. Since SSF = 1.5, the sum of the mean bar resistances must equal 

1.5. The coefficient of all random variables is ö = 0.10. 

The results for the two-bar system are shown in Fig. 3.9. The results 

obtained by RELSYS and CALREL were almost identical which was to be 

expected since RELSYS provides an exact answer for a 2 bar system. There 

was a large difference between CALREL and MCREL for the balanced system 

using intermediate correlation values. 

The results for the three-bar, four-bar, and five-bar systems are 

shown in Figs. 3.10, 3.11, and 3.12, respectively. For the three-bar system, 

the trivariate normal distribution is integrated numerically and the RELSYS 

and CALREL results are almost identical. For the four and five-bar systems, 

the Hohenbichler approximation is used which provides excellent results for 

the four-bar system. The RELSYS results for the five-bar balanced system 

are slightly lower than those produced by CALREL. It is expected that the 
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Table 3.13: Mean Resistance in Each Bar for Two, Three, Four, 

and Five-Bar Systems Which Are 0%, 25%, and 50% 

Unbalanced 

Percent 

Unbalanced 

Two-Bar System: Mean Resistance 

^barl Rbar2 - - - 

0 

25 

50 

0.7500 

0.6428 

0.5000 

0.7500 

0.8571 

1.0000 

- - - 

Percent 

Unbalanced 

Three-Bar System: Mean Resistance 

-*fy>arl Rbar2 RbarZ - - 

0 

25 

50 

0.5000 

0.4286 

0.3333 

0.5000 

0.5000 

0.5000 

0.5000 

0.8571 

0.6667 

- - 

Percent 

Unbalanced 

Four-Bar System: Mean Resistance 

K-barl Rbar2 Rbar3 ■"Q>ar4 - 

0 

25 

50 

0.3750 

0.3214 

0.2500 

0.3750 

0.3482 

0.3125 

0.3750 

0.4018 

0.4375 

0.3750 

0.4286 

0.5000 

- 

Percent 

Unbalanced 

Five-Bar System: Mean Resistance 

*U>arl Rbar2 Rbar3 -*£&ar4 *U)ar5 

0 

25 

50 

0.3000 

0.2572 

0.2000 

0.3000 

0.2786 

0.2500 

0.3000 

0.3000 

0.3000 

0.3000 

0.3214 

0.3500 

0.3000 

0.3428 

0.4000 
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amount of error on the balanced system will increase as the number of bars 

increases. The effect was minimal in the unbalanced system where the weaker 

bars contribute relatively little to the overall safety of the system. The differ- 

ence between RELSYS and CALREL was greatest for uncorrelated resistances 

and became less with increased correlation of the bar resistances. The differ- 

ence between CALREL and MCREL became less with the larger number of 

bars. 

Fig. 3.13 shows a comparison between RELSYS and CALREL for a 

perfectly balanced system where the CALREL results are normalized to 1.0. 

The RELSYS results were usually conservative. In the worst case, which is a 

five-bar system with no correlation between the bar resistances, the RELSYS 

value is low by only 5% and all other results improve from there. Fig. 3.14 

makes the same comparison for a 25% unbalanced system where the results 

for all cases are within 2% of the CALREL results. The four-bar balanced 

parallel system is Example 7 in the RELSYS User's Manual (Appendix A). 

3.9.2   Series-Parallel System 

Hendawi [1994] made an extensive study on parallel systems using 

Monte Carlo simulation to calculate the system reliability of these parallel 

structures for different system safety factors, material behavior, and correla- 

tions. These parallel systems were modeled as series-parallel systems where ev- 

ery combination of failure paths was considered. In this section, the same prob- 

lems were solved using RELSYS and the results are compared. Figures 3.15, 

3.16, and 3.17 show two-bar, three-bar, and four-bar parallel systems along 
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' 0- 0 MCREL Results' 

B—e RELSYS Results 
0—OCALRELResults 

50% Unbalanced 

0.0 0.2 0.4 0.6 0.8 

Correlation Between Bar Resistances (p) 

1.0 

Figure 3.9: Comparison of Results for a Two-Bar Ductile 

Parallel System Between RELSYS, CALREL, and 

MCREL 
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Figure 3.10: Comparison of Results for a Three-Bar Ductile 

Parallel System Between RELSYS, CALREL, and 

MCREL 
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Figure 3.11: Comparison of Results for a Four-Bar Ductile 

Parallel System Between RELSYS, CALREL, and 

MCREL 
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Figure 3.12: Comparison of Results for a Five-Bar Ductile Par- 

allel System Between RELSYS, CALREL, and 
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Figure 3.13:    Comparison of RELSYS Results to CALREL for 

Balanced Parallel Systems 
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with how they were modeled as series-parallel systems by Hendawi [1994]. 

Each parallel system represents a possible failure path and the structure is a 

series system of all possible failure paths. The two bar system, for example, 

is a series system with two possible failure paths. Either bar 1 fails followed 

by bar 2 (bar 2|1) or bar 2 fails followed by bar 1 (bar 1|2). The 3 and 4 bar 

structures are an expansion of the same theme. 

2 Bar System 

t   P 

Bari Bar 2 

Bar 211 Bar 11 2 

Figure 3.15:    Two  Bar  Parallel  System  Modeled  as  a  Series- 

Parallel System 

Figure 3.18 compares the results obtained by Hendawi and Frangopol 

[1994b] to those of RELSYS where the correlation between bar resistances is 

0.0 and the coefficient of variation of both the loads and resistances is 10%. 

The results are shown for three material behaviors indicated by the ductility 

factor (77). A perfectly ductile (77 = 1.0), a semi-ductile (77 = 0.5), and a brittle 

(77 = 0.0) structure are considered. 

The RELSYS results agree exactly for the two bar system and are 
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3 Bar System 

IP 

Bari 

Bar2l 

Bar 311,2 

Bar 2 

Bar II 2,3 

Bari 

Bar211,3 

Bar 3 

» B'il2      M 

Bar2l3,l 

Bar 2 

Bar 312,1 

Bar 3 

Bar3ll      1 I      Bar 112 

i      Bar213      ^ 

Bar II 3,2 

Figure 3.16:    Three Bar Parallel System Modeled as a Series- 

Parallel System 

progressively lower as the number of bars increases. For the worst case in the 

four bar structure, the RELSYS values are low by about 6%. The results are 

similar in Fig. 3.19 where the resistance correlation is increased to 0.5 and 

the worst case difference in results was 10%. With the parallel system, the 

RELSYS results improved with increased member resistance correlation. In 

the series-parallel system, this is not necessarily the case. 

Figs. 3.20, 3.21, and 3.22 show three comparisons between the REL- 

SYS and Hendawi and Frangopol [1994b] results for a ductile, perfectly corre- 

lated structure; semi-ductile, partially-correlated structure; and a brittle, un- 

correlated structure, respectively. In each figure, the upper and lower Ditvelsen 

bounds are shown.   As the number of bars increases, the gap between the 
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Figure 3.17:    Four  Bar  Parallel  System  Modeled  as  a  Series- 

Parallel System 
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Ditlevsen bounds diverges. Since the reliability of the equivalent series sys- 

tem is the average of these bounds, this divergence is also responsible for the 

difference between the RELSYS and Hendawi and Frangopol [1994b] results. 

This is a worst-case scenario since the Ditlevsen bounds are widest when the 

reliability of individual components are equal. The three bar parallel system 

modeled as a series-parallel system is Example 9 in the RELSYS User's Manual 

(Appendix A). 

3.9.3   Other RELSYS Tests 

RELSYS was also tested for a statically indeterminate truss mod- 

eled as a series-parallel system in Chapter 4. The RELSYS results are almost 

identical to those obtained from Monte Carlo simulation. The three-bar in- 

determinate truss is Example 10 in the RELSYS User's Manual (Appendix 

A). 

3.10    Strengths and Limitations of RELSYS 

RELSYS has the ability to compute the system reliability of any 

structure which can be modeled as a combination of series and parallel systems, 

regardless of the complexity. It is much faster than Monte Carlo simulation and 

gives reasonable and conservative results for most situations that are expected 

to be encountered in the investigation of highway bridges. RELSYS produces 

highly accurate results for all parallel systems with five or fewer members. 

The divergence of the Ditlevsen bounds produced the largest errors when the 

reliabilities of components in a series system were all equal, but even the worst 
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case produced answers that were within 10% of the Monte Carlo simulation 

solution. In general, RELSYS provides an excellent approximation for most 

problems with relatively little computational effort. 

There are certain limitations to this approach. The FORM meth- 

ods are approximations and have errors associated with them, especially with 

problems that are highly non-linear. Sometimes a local minimum is identi- 

fied in the minimum distance optimization process and the global minimum 

distance to the failure surface is missed which causes the reliability to be 

over-estimated. This FORM approach is a level 2 reliability method, which 

indicates that only the mean and standard deviation are considered. Other 

distribution parameters such as skewness are ignored. Creating an equivalent 

normal distribution from a non-normal distribution can create errors, espe- 

cially when that assumption is carried through the entire system analysis. 

There is error associated with the bimodal bounds and the numerical 

integration of the multi-normal integral, especially when there is very high 

correlation between the components. In fact, any correlation higher than 0.99 

is reduced to psySab = 0.99 which creates an additional minor error - especially 

for those failure modes which are perfectly correlated. It has been argued 

that a joint /3-point is a more accurate measure of the reliability of a parallel 

system than the multi-normal integral solution [Enevoldsen 1991, Enevoldsen 

and S<^rensen 1990, 1990a]. 

There is a potential problem with failure surfaces that are symmet- 

rical or otherwise have multiple points that have the same minimum distance 
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from the origin to the failure surface. The ß value would be the same for any 

of these points but the direction cosines could be very different which would 

have a profound effect on the system reliability. 

3.11   Potential Improvements for RELSYS 

Two potential areas for improvement in the RELSYS program would 

include: 

a. Use the direct integration approach and the Hohenbichler approx- 

imation for series systems as well as parallel systems. This would reduce the 

inaccuracy associated with the divergence of the Ditlevsen bounds when all of 

the members of a series system have equal reliabilities. Since RELSYS has a 

routine for integrating the trivariate normal distribution, the Ditlevsen bounds 

could also be tightened by incorporating all three-member joint distributions 

in the bounds. 

b. Only one search technique (gradient-based) is attempted for find- 

ing the shortest distance from the origin to the failure surface. In some cases 

the search does not converge. The program could be linked to ADS or some 

other general optimization programs to use other search strategies to improve 

convergence. 



CHAPTER IV 

OPTIMIZED REPAIR STRATEGY 

4.1 Introduction 

With the ability to calculate the structural reliability of an entire 

structural system, a minimum acceptable safety level can be specified. If the 

structure falls below that level, some type of remedial action needs to occur 

to return the structure to a safe level. With many parts of the structure dete- 

riorating simultaneously, a choice needs to be made concerning which repairs 

to make. The decision involves costs of repairs, the effect of the repair on the 

overall reliability of the system, and the desired useful life of the structure. 

This chapter presents an optimization method which minimizes total lifetime 

cost yet avoids the complex probability tree developed in Chapter 2. 

4.2 Establishing a Component Reliability Threshold 

A minimum system reliability index for a structure needs to be spec- 

ified. This index is a measure of acceptable risk. It defines the safety level 

above which the structure must remain throughout its useful life. Ideally, this 

system reliability is based on an analysis of the total cost of the structure. 

The costs of construction and maintenance are weighed against the costs of 

failure as described in Chapter 1. One would expect that the minimum system 

reliability index for a nuclear power plant or a hospital would be significantly 
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higher than for a grain silo or a pump house where the costs of failure are 

much less. 

Through deterioration and/or load increase, the reliability of the sys- 

tem may fall below its specified minimum. Aside from demolishing the existing 

structure and building a new one, the only option is to repair some or all of 

the components which contribute to the system reliability. The approach of- 

fered here involves choosing a threshold component reliability index, ßthreshoid- 

When it is determined that a repair is needed because the system safety is too 

low, all components whose individual reliabilities fall below ßthreshoid will be 

repaired. The value of ßthreshoid is varied until an optimum repair strategy is 

formed based on minimum cost. In this model, the bridge is evaluated every 

two years and the system reliability is computed based on the results. 

4.3   Series System: Seven Bar Truss 

An optimum repair strategy for the seven bar, statically determinate 

truss shown in Fig. 4.1 will be developed. It is modeled as a series system 

as shown in Fig. 4.1. The areas are defined for the bottom chords (Ai), the 

diagonals (^2)) and the top chord (^3). The limit state equations based on 

equilibrium are: 

g(l)   =   g(2) = R-.5(Q/A) 

<?(3)   =   g(4)=g(b) = g{6) = R-.7071(Q/A) 

«7(7)   =   R-Q/A 
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Figure 4.1:    Seven Bar Statically Determinate Truss Modeled as 

a Series System 
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where R is the resistance of the bars; Q is the load on the truss; and A is the 

area of the bars which is changing over time using the same deterioration model 

described by Eqn. 2.3. The inherent assumptions are that the bar resistances 

are perfectly correlated and the resistance of each bar is the same in tension 

and compression. 

The desired useful life of the truss is 70 years and the minimum 

allowable system reliability index is ßmin = 2.0. The load (Q) and bar re- 

sistances (R) are normally distributed random variables with values equal to: 

R = jV[2, .2] and Q = iV[l, .1]. The cost of a repair is equal to the sum of a 

variable cost (Cvar = 5.0) which is charged for each bar repaired and a fixed 

cost (Cfix = 5.0) which is charged each time a repair is made. The cost model 

was deliberately kept simple to observe the trends in the problem. The model 

could easily be modified to include damage intensity and time value of money. 

The first truss to be optimized is one where the areas of the bars have 

been designed (Ai = 1.0; A2 = 1.4142; A3 = 2.0) so that each component has 

the same reliability when the truss is placed in service. Using the deterioration 

model in Eq. 2.3 and Fig. 2.2, the truss is inspected every two years. Because 

the bars have different sizes, the reliability of the bars will differ over time as 

the equal depth of deterioration has a different effect on these bars. Fig. 4.2 

shows the results when ßthreshoid = 7.4 which causes every bar to be repaired 

whenever the system reliability falls below ßmin and results in a total lifetime 

cost of 80. Repairs were required after 28 and 56 years of service. 

Lowering ßthreshoid to 4.0 as shown in Fig. 4.3 results in repairs after 
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28 and 50 years of service. Only bars 1 and 2 are fixed during the first repair. 

Bars 1 through 6 are repaired the second time and bar 7 is never repaired. 

The resulting cost is 50 which turns out to be the optimum solution. 

Fig. 4.4 indicates that ßthreshoid can be lowered further to 2.6 but the 

resulting lifetime cost is 55. Repairs are made at 28, 50 and 56 years. Bars 

1 and 2 were not repaired at year 50 as they were in Fig. 4.3. As a result, 

a special repair was required at year 56 for bars 1 and 2 which resulted in 

additional cost. 

All possibilities can be considered starting with a high enough ßthreshoid 

value to ensure that all components must be repaired and then incremen- 

tally lowering the ßthreshoid value until the structure cannot maintain the 

desired safety over its useful life. Fig. 4.5 shows the resulting costs associ- 

ated with the varying ßthreshoid values. The optimum solution occurs when 

3.4 < ßthreshoid < 4.6. The range for the optimum ßthreshoid solution is wide 

because there are so few repair options in this problem. This technique is most 

efficient for cases where the number of discrete repair options is large. 

The truss was analyzed again where all of the bars started with equal 

areas (Ax = A2 = A3 = 1.0). In this case, the deterioration affects each bar 

equally but the component reliabilities are different because some bars take 

a larger proportion of the load. Fig. 4.6 shows the optimum solution using a 

value of ßthreshoid — 4.0. Repairs are required every eight years with bar 7 being 

repaired every time. Bars 3, 4, 5, and 6 get repaired every other time and bars 

1 and 2 are repaired every third time. The total lifetime cost is 180. The cost 



179 
8.0 

6.0 

CO. 

x 
CD 

TJ 
C 

4.0 

CO 

"05 
cc 

2.0 

0.0 

System and Bars 1 and 2 
Bars 3, 4, 5, and 6 
Bar 7 

0.0 20.0 40.0 
Time (years) 

60.0 80.0 

Figure 4.2: Repair Plan for a Seven Bar Statically Determinate 

Truss, Initial Equal Importance of Bars; ßthreshoid = 

7.0; Cost = 80 



180 
8.0 

6.0 

ca 
x 

■a c 
4.0 

CO 

"03 
DC 

2.0 

0.0 

1             '             1             '             1  '  

V ■.\ 

"V\ \\ 
%\   *■ \ \ 
\ ^ \ \ \ 

Y^^ \s   \ \ 
\ ^ \ 
\ \   \ \ 
\ N    v\ \ 
\  \ \ \   \      \ \ 
\   \ 

- 
\ \ 

\ \    \ " \   \ \ \    \ *• \ 
\    \ W 
\     \ 
\     \ 
\     N \   "\ \ 
\      % '                          ^ 
\      \ N. 

Pthreshold           \ 

- 

ßmin=2-0                            1 "min 
oyoieiii 
c 1 /■* w*r\    H     « ■** ^J   O LJdio  i aiiu c 

 Bars 3, 4, 5, and 6 
 Bar 7 

0.0 20.0 40.0 
Time (years) 

60.0 80.0 

Figure 4.3: Repair Plan for a Seven Bar Statically Determinate 

Truss, Initial Equal Importance of Bars; ßthreshoid = 

4.0; Cost = 50 



181 
8.0 

6.0 

x 
CD 

C 

4.0 

.a 
eg 

"05 

2.0 

0.0 

1               1               '               1               '               1               ' 

V \ 
V\ \ \ 
\\ •> \ 
\\ \ \ 

V-^ \ 
\ 

\    s         \ \ \ 
\       \ \ \ 
\        x               \ \\ 
\     N           v\ \\ 
\                  N                                       - s \                     \                                       \ \\ 
\                          \ 
\                            \ " \    \ \ \ 
\                              \ "• \ 
\                                \ W 

\                                      N \     \ \ 
\                                         \ "* 
\                                           \ \ 

\ 

\ 

s 

\ 

HThreshold = ^'"     \ 

\ 

\ 

ß .  =2.0                 ' 
[\ 

  System 
     1 3ars 1 and 2 
 Bars 3, 4, 5, and 6 
 Bar 7 

i.i.i, 

0.0 20.0 40.0 
Time (years) 

60.0 80.0 

Figure 4.4: Repair Plan for a Seven Bar Statically Determinate 

Truss, Initial Equal Importance of Bars; ßthreshoid = 

2.6; Cost = 55 



182 

90.0 

CO o 
Ü 

~£ 
o 

80.0   - 

70.0 

60.0  - 

50.0 

40.0 
2.0 4.0 6.0 8.0 

"■"Threshold Value 

Figure 4.5: Total Cost of Repair With Varying Values ßthreshoid 

for a Seven Bar Statically Determinate Truss, Initial 

Equal Importance of Bars 



\ 
183 

associated with all feasible ßthreshoid values is shown in Fig. 4.7. Note there is 

a slight jump in cost from 180 to 185 when ßthreshoid = 2.6. This particular 

value represents a special case where some bars just missed the threshold for 

repair which caused an additional special repair later on. 

4.4   Parallel System 

The repair of the three bar parallel structure shown and modeled in 

Fig. 3.16 is optimized using the same useful life of 70 years and a minimum 

acceptable reliability of ßmin = 2.0. The load (P) and bar resistances (R) are 

normally distributed with values equal to: P = iV[1.5, 0.3] and R = N[.5, .05]. 

All variables are uncorrelated. 

For a balanced system (i.e., ong where the bar resistances are the 

same), the component reliabilities are the same for all three bars at all times. 

The load is distributed to the members according to relative stiffness. As one 

member deteriorates, the other members take more load. The reliability of 

each member drops but the component reliabilities all remain equal. Fig. 4.9 

shows this effect for the ductile three-bar structure in Fig. 3.16. The bar 

areas are equal (Ax = A2 = A3 = 2.0) and the deterioration model is shown 

in Eq. 2.3 and Fig. 2.2. The individual reliabilities are allowed to fall below 

ßmin = 2.0, yet the system reliability remains above the specified minimum. 

The optimal solution is trivial and requires repairing all bars at once. 

The effect of material behavior can be observed using a ductility 

factor T) which reflects the post-elastic capacity of the material as shown in 
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Fig. 4.8. The values of r) range from rj = 1.0 for a ductile structure which 

retains full yield capacity after reaching its elastic limit to rj = 0.0 for a brittle 

structure which has no post-yield capacity. The semi-ductile case (r) = 0.5) 

for the three bar parallel structure is shown in Fig 4.10 where the individual 

component reliabilities must remain above the reliability of the system. 

Material Behavior 

ö, a, OÜ 

Semi-Ductile 

11=0.5 

°y 

Brittle 

11=0.0 

Figure 4.8: Material Behavior Using a Ductility Factor r) 

The respective reliabilities of the bars remain equal even if the bar 

areas are different {A\ = 0.5, A2 = 2.0, A3 — 3.5). Fig. 4.11 shows that the 

smallest bar, Bar 1, eventually deteriorates to the point it no longer exists. 

The remaining two bars provide adequate system safety until their eventual 

deterioration forces a repair. Comparing Fig. 4.9 and 4.11, the reliability of 

the parallel system with bars of equal areas was higher and was repaired later 

in its structural life. 
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4.5   Series-Parallel System:   Three Bar Indeterminate 
Truss 

The three bar indeterminate truss shown if Fig. 4.12 is modeled as 

a series-parallel system where the failure of any two bars will cause failure 

of the system. The useful life is 70 years and the allowable reliability level 

for the system is ßmin = 2.0. The resistances of the three bars are: Rbari = 

7V[15,1.5], Rbar2 = iV[15,1.5], and Rbar3 = 7V[10,1.0]. The load on the truss 

is P = N[20,4.0]. The deterioration model (Eq. 2.3) and the costs (Cfix = 

5.0, Cvar = 5.0) are unchanged. The limit state equations which describe the 

components in the series-parallel model (Fig. 4.12) are: 

Prior to any bars failing (Bar 1, Bar 2, Bar 3) 

g(l)   =   #i{2.0AlA3 + V2{AXA2 + A3A2)) - V2PA1 (cos9 + sinB) - 2.0PA2cos6 

g(2)   =   R2(2.0A1A2 + V2(A1A2 + A3A2))-V2P({Al-A3)cos0 + (Al + A3)sin9) 

g(3)   =   R3(V2A1A3 + AlA2 + A3A2) + P(A3sine-A3cose-V2A2cose) 

If Bar 1 fails (Bar 2|1, Bar 3|1): 

g{A)   =   R2A2 - P(sin8 + cos6) + A/^JMI 

g(5)   =   R3A3 - PV2cos9 + TJRIAT. 

If Bar 2 fails (Bar 1|2, Bar 3|2): 

0(6)   =   RlAl-V2/2(P(sinO + cos9) + riR2A2 

g(7)   =   R3A3-V2/2(P(cos6-sin6)+r)R2A2) 
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If Bar 3 fails (Bar 1|3, Bar 2|3): 

g(8)   =   RrAx - V2Pcos6 + r]R3A3 

g(9)   =   R2A2 - P(sin9 - cos9) - V2r]R3A3 

Investigating a ductile truss and starting the optimization with a 

large value of ßthreshoid = 7.0, Fig. 4.13 shows that all three bars get repaired 

resulting in a lifetime cost value of 60. Lowering the component reliability 

threshold to ßthreshoid = 4.0 caused only bars 1 and 3 to be repaired as shown 

in Fig. 4.14. The resulting total cost was lowered to 45 which indicates that 

bar 2 did not need to ever be repaired. Attempting to lower ßthreshoid to the 

point where bar 3 does not get repaired resulted in a repair plan where the 

minimum system safety could not be maintained for the life of the structure. 

The same analysis was completed for a brittle truss using the same 

assumptions. Fig. 4.15 shows the brittle truss where ßthreshoid = 7.0. All three 

bars were repaired and the total lifetime cost was 100. Lowering the ßthreshoid 

value to 4.0 resulted in bar 2 not being repaired and the total cost was 90. 

There were more lifetime repairs required using a lower ßthreshoid value but the 

total cost was still less. It is interesting to note in Fig. 4.16 that the reliability 

of bar 3 improves as bar 2 deteriorates. 

In both cases, the optimal solution was to repair only bars 1 and 3. 

As expected, the safety of the brittle structure was much more expensive to 

maintain.   There are a number of items which could be investigated at this 
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point such as changing the direction of the load, changing the resistance or ini- 

tial area of one or more bars, varying the material ductility properties, and/or 

varying the correlation among resistances. Correlation between the resistances 

is interesting in a series-parallel structure because increased resistance corre- 

lation improves the reliability of a series system but decreases the reliability 

of a parallel system. Looking at a partially ductile truss (77 = .5), for example, 

for ßthreshoid values of 7.0 and 4.0, the results are shown in Table 4.1. 

Table 4.1: Repair Costs for a Semi-Ductile Three Bar Inde- 

terminate Truss for Different Resistance Correlation 

Values 

Pthreshold PRi,R2 
cost 

7.0 0.0 100 

7.0 0.5 80 

7.0 1.0 100 

4.0 0.0 90 

4.0 0.5 90 

4.0 1.0 90 

For this case, the best solution occurred when all three bars were re- 

paired and the resistances were partially correlated. In both cases, the repairs 

were made later for the partially correlated case. For the ßthreshoid value of 

7.0, the later repairs resulted in one less lifetime repair which was not true for 
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the case when ßthreshoid was equal to 4.0. 

4.6   Summary 

For some simple structures, the optimal choice of a ßthreshoid value 

appears to offer a repair strategy for a structure which minimizes cost and 

maintains a desired level of system safety for the life of the structure. While 

the choice of repairing one bar or another may appear simplistic, the method 

can be applied to the more realistic choice of repairing a deck, replacing a 

beam, rehabilitating an abutment, or some combination of these. A real ap- 

plication of this method will become more complex as the structure will be 

more sophisticated and a particular repair may have several competing options. 



CHAPTER V 

COLORADO BRIDGE E-17-AH: A CASE STUDY 

5.1   Introduction 

The previous chapter presented a method for optimizing the repair of 

a structure based on system reliability. Components of a system were chosen 

for repair based on minimizing the total cost while maintaining the reliability 

of the structural system above a prescribed minimum value for the lifetime of 

the structure. The method was illustrated for some simplified truss structures 

using hypothetical values for deterioration, cost, and load. 

This chapter will apply this technique to an existing highway bridge 

in the State of Colorado. It will examine what complexities arise and what 

simplifications are needed to solve a real world problem and will assess how 

system reliability methods can be used to optimize the repair of a structure. 

Again the emphasis is on assessment rather than design since the structure 

already exists and the challenge is to maintain its reliability throughout the 

useful life of the structure. The organization of this chapter is as follows: 

• Choose a sample bridge. 

• Calculate the load rating capacity of the bridge for a standard AASHTO 

HS-20 truck 
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• Using the same equations as those used for the load rating, determine the 

reliability of the bridge components and the bridge system. The random 

variables must be defined. Initially the live load will be considered to be 

a deterministic HS-20 truck so that the load rating and the reliability 

index can be compared. 

• Using available live load models for highway bridges, allow the bridge 

live load to become a random variable and observe the effect. 

• Assess and develop limit state equations for the other potentially rele- 

vant failure modes in the bridge that are not included in a bridge load 

rating. The reliabilities of these failure modes will be computed and the 

sensitivity of the random variables will be examined. 

• Considering all relevant failure modes, develop a series-parallel model of 

the bridge system and compute the system reliability. When examining 

all failure modes and possible correlations between random variables, the 

system model can quickly become quite complex. Based on the relative 

reliabilities of the components and some reasonable assumptions, the 

model can often be simplified without significant loss in accuracy. 

• Examine how the bridge is deteriorating over time. Selected deteriora- 

tion models from the literature such as corrosion of the structural steel 

and the corrosion of steel reinforcement in concrete due to the pene- 

tration of chlorides will be used. The effect of the deterioration on the 

component and system reliability over time will be shown. 
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• Using realistic repair options and their associated costs, the repair of the 

bridge will be optimized over time for several different scenarios. The 

cost data will be based on actual repairs made in the State of Colorado 

and on projected discount rates for money. The sensitivity key variables 

such as corrosion factors, the discount rate, and the nature of the bridge 

model with respect to system reliability and the optimum repair strategy 

will be examined. 

• This analysis involves strength-based limit state equations. Some repairs 

are made based on serviceability constraints. The structure may still be 

sufficiently strong to carry the required load but spalling concrete or 

excessive potholes may necessitate a repair. The inclusion of service- 

ability flags as a means to accommodate serviceability concerns will be 

introduced and illustrated. 

• From the examples shown, some conclusions can be drawn concerning 

the methodology and the potential usefulness of system reliability in 

solving real world problems. 

This study is restricted to repairs based on deterioration of the 

bridge. While a substantial amount of bridge renovation has been done to 

address safety concerns such as deck width, sight distance, and excessive cur- 

vature, this study will only consider those repairs attributable to deteriora- 

tion. Likewise, those rehabilitations which addressed vulnerability issues such 
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as seismic retrofit, collision and fracture critical situations will be neglected. 

5.2   Bridge E-17-AH 

Since a system reliability approach to highway bridges is still a new 

concept, the structure for this case study was chosen based on its simplicity and 

commonality. The focus is on the reliability technique. Complex structures 

under unusual conditions such as scour from waterways, complex trusses, non- 

prismatic plate girders, and suspension systems were deliberately avoided in 

this first attempt. Although reliability methods can be used on all of these 

structures, the complexity of the calculations obscures the point of the exercise. 

By choosing a common type of bridge, a demonstration that these reliability 

methods are useful provides applications to a large number of structures and 

offers the greatest possible benefit. 

The structure chosen for this study is the Colorado State Highway 

Bridge E-17-AH located on 40th Avenue (State Highway 33) between Madison 

and Garfield Streets in Denver, Colorado. The bridge has three simple spans of 

equal length and has a total length of 137 feet (41.76 m) as shown in Figs. 5.1 

and 5.2. The deck consists of nine inches of reinforced concrete and a three 

inch surface layer of asphalt. The east-west bridge has two lanes of traffic 

in each direction as shown in Fig. 5.3 with an average daily traffic (ADT) of 

8500. The roadway width is 40 feet with five foot pedestrian sidewalks and 

handrailing on each side. The bridge offers a clearance of 22.17 feet (6.76 

m) for the CB&Q railroad spur which runs underneath. There is no skew or 

curvature. 
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The slab is supported by nine standard-rolled, compact, non-composite 

steel girders as shown in Fig. 5.4. The two exterior girders, which support the 

pedestrian traffic are 33" (83.8 cm) WF (wide flange) beams which weigh 125 

lb/ft (1824 N/m). The seven interior girders are all 33" (83.8 cm) WF beams 

at 132 lb/ft (1926 N/m). While these standard shapes are no longer produced 

today, their dimensions [AISC 1943] are shown in Fig. 5.5. The girders are 

stiffened by end diaphragms and intermediate diaphragms at the third points 

(all diaphragms are 15" (38.1 cm) channel sections at 33.9 lb/ft (494.7 N/m)). 

Each girder is supported at one end by a fixed bearing and an expansion 

bearing at the other. 

137.3' 

43.83'- -43.83' 43.83' 

40th Ave. 
S.H30 

Abutment #1 

22.2' 

Abutment #4- 

L        CB&Q RR spur i  '   ' i 

Pier #2 Pier #3 

Figure 5.1: Profile of Colorado State Highway Bridge E-17-AH 

The bridge is supported by abutments at the end and by two piers in 

the middle. The abutments are reinforced concrete beams supported by eleven 

reinforced concrete piles with exterior steel casings as shown in Fig. 5.6. The 

piers consist of reinforced concrete beams on which the girder bearings rest, 

supported by tapered reinforced square columns. Each column has a footing 
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i*mr""«flci«f<<'di 

Figure 5.2:    Profile   Photograph   of   Colorado   State   Highway 

Bridge E-17-AH 

Figure 5.3:    Roadway Photograph of Colorado State Highway 

Bridge E-17-AH 
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Figure 5.4:    Cross Section of Colorado State Highway Bridge E- 

17-AH 
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0.88 in. 0.805 in. 

WF 33x132 WF 33x125 

Figure 5.5:    Standard Shape Dimensions for the WF 33x132 and 

WF 33x125 Beams 
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which distributes the load to the sand and gravel soil underneath. As shown 

in Figs. 5.4 and 5.7, there is a six foot (1.83 m) supporting wall which connects 

the four columns. Piers 2 and 3 are very similar. The only differences are the 

positioning of the supporting wall and the dimensions on the top beam. Pier 

2 is designed to support a fixed bearing and an expansion bearing while Pier 3 

supports two expansion bearings as shown in Figs. 5.19 and 5.18, respectively. 

Figure 5.6:    Abutment Photograph of Colorado State Highway 

Bridge E-17-AH 

The bridge which includes 204,400 lbs (909 kN) of structural steel, 

64,900 pounds (288 kN) of reinforcing steel, and 464 cubic yards (354.5 m3) 

of concrete was constructed in 1942 at a cost of $393,000. The only major 

repair made on the bridge has been a $68,000 repair to the approach of the 

bridge in 1992 [CDOT 1995b]. The bridge has no toll, no postings, and no 

detour length is listed indicating the bridge can be bypassed. Bridge E-17- 

AH is currently considered functionally obsolete because of the 40 foot (12.2 
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Figure 5.7:    Column Pier Photograph of Colorado State Highway- 

Bridge E-17-AH 
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m) road way width and has a sufficiency rating of 60.8. The sufficiency rating 

ranges from a high of 100 indicating an entirely sufficient bridge to 0 indicating 

an entirely insufficient bridge. The sufficiency rating is a function of structural 

adequacy and safety (55%), serviceability and functional obsolescence (30%), 

and essentiality for public use (15%) [FHWA 1988a]. 

5.3   Load Rating of Bridge E-17-AH 

Agencies charged with operating and maintaining a bridge are re- 

sponsible for its safety. They need to have an understanding of how much 

load a bridge can safely carry to ensure the safety of those who use the bridge. 

The most common method is to assign a load rating to a bridge which spec- 

ifies its live load carrying capacity. Ratings are often in tons, metric tons, 

or HS capacity. A number of rating methods and live load standard vehi- 

cles are available which use both allowable stress and load factor approaches. 

The efforts of AASHTO and the National Cooperative Highway Research Pro- 

gram (NCHRP) have helped provide a standard approach [White et al. 1992]. 

AASHTO [1989] and AASHTO [1994] both provide widely used rating meth- 

ods but there are numerous differences between them. This study will in- 

corporate the most recent load rating calculations and equations used by the 

Colorado Department of Transportation for Bridge E-17-AH [CDOT 1995c]. 

It uses the Bridge Analysis and Rating System (BARS) program [BARS 1988] 

to compute the load rating and relies on a load factor approach which includes 

inventory and operating ratings. 

The inventory rating is the lower of the two ratings and represents 



210 

the load level at which the structure is safe for an infinite period of time [White 

et al. 1992] (assuming no deterioration of the structure). The equation for the 

inventory rating factor (RFinv) based on moment is 

RFmv -     ßjMu 
(5-1} 

The operating rating is the absolute maximum load that should be allowed on 

the bridge under any circumstances and the equation for the operating rating 

factor (RFopr) based on moment is 

where Mu is the ultimate moment capacity, M<n is the dead load moment 

demand, Mu is the live load moment demand and 7 = 1.3 and ß = 1.67 from 

paragraph 3.23 of AASHTO [1992]. 

The live load associated with the load rating is the AASHTO HS-20 

truck [AASHTO 1992] which consists of a tractor truck and a semi-trailer as 

shown in Fig. 5.8. To obtain the gross weight of the vehicle in tons, the HS 

designation is multiplied by 1.8. An HS-20 truck for example weighs 36 tons 

(32.6 metric tons). The spacing between the truck wheels and the front wheels 

on the trailer is 14 feet (4.27 m) while the spacing between the trailer wheels 

can range from 14 feet (4.27 m) to 30 feet (9.14 m). The variable spacing 

allows the HS-20 truck to more accurately model the trucks actually traveling 

on the highways and allows the spacing to be varied to create the most critical 

cases for negative moment on continuous spans. 
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Figure 5.8: HS-20 Truck Configuration 

The load rating is normally based on the superstructure only since 

the substructure does not usually dominate the design. The load rating for 

Bridge E-17-AH is based on the slab and the most critical girder. The slab 

is rated for moment capacity while the girder is evaluated based on moment, 

shear, and serviceability. The lowest rating for all of the failure modes is the 

load rating for the bridge. The load rating is a single value which describes 

the strength of the bridge. It is the deterministic equivalent of the system 

reliability index that this study is attempting to compute. It is therefore 

useful to compute the load rating of this bridge in detail and use the same 

equations to compute the system reliability index.  This will provide a basis 
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for comparison. 

5.3.1   Load Rating: Slab 

The rating on the concrete slab is based on its ultimate moment 

capacity and the dead load and live load demand placed upon it. Fig. 5.9 shows 

the cross section of the slab and the placement of the steel reinforcement. The 

ultimate moment capacity of the slab is found by multiplying the yield force in 

the tensile reinforcement Tt by the distance between the tensile reinforcement 

and the centroid of the equivalent compression block deff — at/2 as shown in 

Fig. 5.10. The load rating is based on the resisting moment over the support, 

so in this case, the tension steel is in the top of the slab and defj is the distance 

from the bottom of the slab to the centerline of the top reinforcement. The 

analysis is based on a one-foot section of slab. The dimensions, steel placement, 

and yield strengths are taken from the bridge plans [CSHD 1941] and the 

BARS output [CDOT 1995c]. The ultimate moment Mu is 

Mu   =   Tt(deff - at/2)(f> (5.3) 

31, 000/6(6.75m - 1.013/2m)(/t/12m)(.9) 
1000lb/kip 

=   14.516/t - kip (19.6SlkN - m) 

where (j) = 0.9 is a reduction factor [AASHTO 92 (8.16.3.2.1)] and: 

Tt = Atfy = .62m2(50, OOOpsi) = 31,000 lb (137.9 kN) (5.4) 

at=lrr .85(3oo(^o(?2w/o(i/o=L013 m (2,57 cm)   (5,5) 
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dPff=6.75' 

#5 bar @ 6" #4 bar @ 6"        asphalt wearing surface 

-—|ll.51"|*- 

6'8" 

11.51" 

Figure 5.9:    Cross Section of Concrete Slab Showing Placement 

of Reinforcement 

eff eff   7 

-> Asfy 

Actual 

(a) 

0.85t;' 

a=alC 

dpf,-at/2 

^ Asfy 

Equivalent 

(b) 

Figure 5.10:    (a) Actual and (b) Equivalent Approximation for 

Stress on Cross Section of Concrete Slab 
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The dead load demand on the slab includes the weight of the concrete 

Wconc and the weight of the asphalt wasph which are uniformly distributed over 

the 6.187 feet (1.886 m) which separate any two interior girders. The unit 

weights of the concrete fconc and asphalt jasph are 150 lb/ft3 (2403 kg/m3) 

and 144 lb/ft3 (2307 kg/m3), respectively. The dead load moment Mdi is 

ws2Cf Mdl   =   -j- 

159.44Z6//t(6.187/i)(0.8)   kip 
.61 ft — kip 

8 1000/6 

=   (0.827 N-m) (5.6) 

where the continuity factor Cf = .8 is used because the slab spans more than 

three girders [AASHTO 92 (3.24.3.1)] and: 

w   =   wasph + wconc = 12SMlb/ft + mb/ft = 159.44 lb/ft (2327 N/m) 

9.875m 
Ylin/ft^ 

wconc   =   tslab%onc=^^-(l50lb/ft3)(lft) = 123.44 lb/ft (1801 N/m) 

»171 

wasph   =   HMAlasph = ^—jt(U4lb/ft3)(lft) = 36.0 lb/ft (525.3 N/m) 

(5.7) 

The live load moment Mü on the slab is based on a single wheel 

Ltrk from the HS-20 truck placed in the center of the slab which produces a 

16 kip point load between two girders. The live load moment Mu [AASHTO 

92 (3.24.3.1)] includes both a continuity factor Cf and an impact factor If. 

Mu   =   £^±2)CfJ/=l6M6.187/i + 2/t)(8)(13) 

=   4.26 ft - kip (5.78 kN - m) (5.8) 

where If = 1.3 [AASHTO 92 (3.8.2)] and Cf = .8 [AASHTO 92 (3.24.3.1)] 
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With the moment demand and capacities, the inventory rating factor 

RFinv can be calculated as: 

RFm = M--7M, = 14-51«-1.3(.61) = 

/fyM,, 1.67(1.3)(4.26) k     ' 

Using the rating factor, the load rating for the slab can be computed in tons, 

metric tons, or HS equivalents, as follows: 

Inventory Rating: 36tons(RFinv) = 36£on(1.487) = 53.56 tons 

Metric: 53.56t0nS( J«^) = 48.59 metrzc tons 

HS Rating: HS20(RFinv) = 20(1.487) = HS29.8 

The operating rating is calculated the same way. 

RF     __ Mu - 7M„ _ 14.516 - 1.3Q61) _ 
RFopr -       jMu       -       (1.3X4.26)       "2-479 (5'10) 

Inventory Rating: mon{RFopr) = 36ton(2.479) = 89.26 tons 

Metric: 89.26tons(Äg^) = 80.98 metric tons 

HS Rating: HS20(RFopr) = 20(1.487) = HS49.6 

5.3.2   Load Rating: Shear on Critical Girder 

As with the slab, the load rating of the girder is a function of the 

shear capacity and shear load demand on the girder. The bridge girders are all 

compact sections. Assuming that the entire shear capacity of the girder comes 

from the web, the ultimate shear capacity Vu is a function of the strength of 

the steel Fy, and the depth dw and thickness tw of the web. 

Vu   =   .58Fydwtw = .58(33, OOOpsi) (31.35m) (.58m.) (Ib/lOOOkips) 

=   348.02 kips (1548 kN) (5.11) 
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where it can be seen from Fig. 5.5 that for the WF 33x132 beam, the depth 

of the web dw = d-2tf = 33.15 - 2(.88) = 31.35 in (79.63 cm). 

The dead load shear is computed by considering the concrete and 

asphalt as a uniformly distributed load based on the tributary area of the slab 

and the self-weight of the steel girder. The dead load of the concrete wconc is 

wconc = 150/6//t3(^|^)(6.667/t) = 823 lb/ft (12,010 kN/m)     (5.12) 

The dead load of the asphalt wasph is 

3?77 
wasph = 14Alb/ft3( ){6.667ft) = 240 lb/ft (3502 N/m)        (5.13) 

and the weight of the steel wstl is 132 lb/ft (1926 N/m). The total dead load 

wtot is the sum of the individual loads, 

wtot = wconc+wasph+wstl = 823+240+132 = 1195 lb/ft (17,439 N/m)  (5.14) 

The maximum dead load shear Vdi for a simply supported beam occurs at the 

supports and is equal to 

Vdl = ^^ = 11951b/ft (43-833^) (kip/1000lb) = 27.6 kip (122.8 kN) 

(5.15) 

The most critical live load shear occurs when the HS-20 truck has its 

rear wheel over the support as shown in Fig. 5.11 where the load represents 

one wheel line of the truck. It can be shown that the value of the maximum 

shear Vmax which occurs at the left reaction for any length L can be calculated 

as: 

Vmax = 16(1 + ^-^ + ^^) (5.16) 
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Using the span length L — 43.833 ft (13.36 m), the critical shear is Vmax = 

28.33 kips (126.0 kN). The amount of the truck load that is transferred to 

each girder is determined by the AASHTO distribution factors DF which 

are a function of the girder spacing S. For an interior steel beam with a 

reinforced concrete deck where the girder spacing is less than 14 feet (4.27 m), 

the distribution factor DF is [AASHTO 92 (3.23.3)] 

5.5 5.5 
(5.17) 

These distribution factors are best used for bridges with a constant deck width, 

four or more girders which are parallel and have similar stiffness, and bridge 

curvatures of four degrees or less. Bridge E-17-AH qualifies in all cases. 

16k    16k   4k 

Figure 5.11:    Critical Location for HS-20 Truck on Girder to Pro- 

duce Maximum Shear 
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The dynamic amplification of the shear force that results from impact 

of the moving vehicle is included in an impact factor I which is a function of 

the length of the girder. Because the length of the girder L is 43.833 ft (13.36 

m), the impact factor is [AASHTO 92] 

/ = —^°— = - = 0.296 (5.18) 
L + 125      43.833 + 125 v       ' 

The maximum live load shear Vu experienced by a single girder is a function 

of the maximum shear caused by the HS-20 truck Vmax, the girder distribution 

factor DF, and the impact factor / as follows: 

Vu = VmaxDF(1.0 + I) = 28.33/fcips(1.212)(1.296) = 44.5 kips (197.9 kN) 

(5.19) 

The bridge rating considering failure of an interior girder due to shear is com- 

puted similarly to the slab rating. The inventory rating factor RFinv can be 

calculated as: 

"--^-^g)="'       (5-20) 

The operating rating factor can be computed as RFopr = 1.67RFinv = 1.67(3.23) 

5.40. 

Using the rating factor, the load rating can be computed in tons, 

metric tons, or HS equivalents, as follows: 

Inventory Rating: 36tons(RFinv) = 36£on(3.23) = 116.3 tons 

Metric: ll^tons{™™^on) = 48.59 metric tons 

HS Rating: HS20(RFinv) = 20(3.23) = #564.6 
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Similarly, the operating ratings are 194.4 tons, 176.4 metric tons, and #5108.0 

5.3.3   Load Rating: Moment on Critical Girder 

The critical girder is also evaluated for its moment strength. The 

ultimate moment capacity Mu is evaluated based on the plastic section mod- 

ulus Z and the yield strength of the steel Fy = 33, 000 psi (227.5 MPa). The 

plastic section modulus Z is a function of the dimensions of the WF 33x132 

girder [AISC 1943] as shown in Fig. 5.5. 

z   =   ,33.15 - 2(0.88) (0 58)33.!5 - 2(0.88) + (3315 _ 0|8)(Q ^ ^ 
Zi TC Zi Zi 

=   469.73 in3 (7697 cm3) (5.21) 

Since the girder is a compact section, the ultimate moment capacity Mu is 

therefore 

M, = ZF„   =   469.73m=(33,000psi)(J|S)(I^) 

=   1291.76 ft - kips (1725 kN - m) (5.22) 

The dead load moment Mdt is computed using the same uniformly 

distributed load wtot = 1195 lb/ft (Eq. 5.14) that was used to compute the 

shear for a simply-supported beam. 

M       
W^L2      1195/6//t(43.833/t)%   kip   ,     qnq8,+   ,.     ^„o.^      x 

Mdl = —— = ^löÖÖlb' = ft-kips (411.8 kN-m) 

(5.23) 

The most critical live load moment occurs when the wheels of the HS- 

20 truck are offset slightly from the center of the girder as shown in Fig. 5.12 
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where the load represents one wheel line of the truck. It can be shown that 

the value of the maximum moment Mmax which occurs at the center of the 

girder for any length L can be calculated as: 

r36,L 
M, max -LL (^-2.33)2- 56] (5.24) 

Using the span length L = 43.833 ft, the critical moment is Mmax = 259.0 ft- 

kips (351.1 kN-m). 

/- 

JZ 

k 

0.5L 

36 k 

16k v 
0.5L 

16k 4k 

V 
14 ft 

V 1/  / 

V 
14 ft 

V 

2 @ 2.33 ft 

L — A 

Figure 5.12:    Critical Location for HS-20 Truck on Girder to Pro- 

duce Maximum Moment 

Using the same girder distribution factor DF and impact factor i" as 

for the shear calculation (Eqs. 5.17 and 5.18), the maximum live load moment 

Mu experienced by a single girder is 

Mu   =   MmaxDF(1.0 + I) = 259.0ft - kips(l.212)(1.296) 
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=   399.7 ft - kips (541.9 kN - m) (5.25) 

The inventory rating factor RFinv considering failure of an interior 

girder due to moment is: 

RF       Mu-jMdl_ 1291.76- 1.3(303.8) _ 
RFmv ~     ß<yMu     ~     1.67(1.3)(399.8)     " L°35 (5"26) 

Similarly the operating rating factor can be computed as RFopr = 1.67RFinv = 

1.67(1.035) = 1.725. Using the rating factor, the inventory load ratings for 

serviceability are computed as 37.26 US tons, 33.8 metric tons, and HS 20.7. 

Likewise, the operating ratings are 62.1 US tons, 56.34 metric tons, and HS 

34.5. 

5.3.4   Load Rating: Serviceability on Critical Girder 

The final rating considered in this bridge is a so-called serviceability 

rating which is based on the moment strength of the most critical girder. The 

largest difference from the previous girder moment computation is that the 

elastic section modulus Sx is used rather than the plastic section modulus Z. 

The inventory rating factor RFinv for serviceability is [CDOT 1995d] 

Rp       _ (j)FySx - Mdl  _      luin/ft)(W00lb/kip)      ~ 303-8/t - k%P _ 
Kinv~        ßMu        ~ 1.67(399.8/*-top) 

(5-27) 

The operating rating factor is RFopr = 1.67RFinv = 1.67(0.8923) = 1.487. 

Using the rating factor, the inventory load ratings are computed as 32.12 US 

tons, 29.14 metric tons, and HS 17.8. Likewise, the operating ratings are 53.5 
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US tons, 48.6 metric tons, and HS 29.7. 

5.3.5   Final Load Rating of the Bridge 

A summary of the separate load ratings is shown in Table 5.1. The 

lowest of the four ratings becomes the rating for the bridge. For Bridge E- 

17-AH, the overall load rating is determined by the serviceability rating. The 

bridge is therefore given an inventory rating of HS 17.8 and an operating rating 

of HS 29.7. The numerical results presented here differ slightly from the BARS 

output from the last CDOT load rating [CDOT 1995c]. The reasons for the 

differences are some discrepancies in the input data by CDOT, specifically the 

placement of the HS-20 truck, the unit weight of steel, and exact dimensions on 

the WF33xl32 girder. The BARS program places the HS-20 truck in the exact 

center of the girder as opposed to the more critical offset position as shown in 

Fig. 5.12. Otherwise, the equations and input data used in this study and by 

CDOT are identical. 

5.4   Component Reliability of Bridge E-17-AH 

Using the same equations as those used for the load rating, the re- 

liability of those same components or failure modes will be computed (i.e., 

moment failure in the slab, shear and moment failure in the critical girder). 

The serviceability criterion will not be used here, although serviceability will 

be discussed at the end of the chapter. This will provide a basis for comparison 



223 

Table 5.1:    Summary  of Load  Ratings  for  Colorado  Highway 

Bridge E-17-AH 

Inventory Rating 

Failure Rating HS U.S. Tons Metric Ton 

Mode Factor Rating Capacity Capacity 

slab 1.487 29.8 53.56 48.59 

int. girder: flexure 1.035 20.7 37.26 33.80 

int. girder: shear 3.23 64.6 116.3 105.5 

serviceability .8293 17.8 32.12 29.14 

Operating Rating 

Failure Rating HS U.S. Tons Metric Ton 

Mode Factor Rating Capacity Capacity 

slab 2.479 49.6 89.26 80.98 

int. girder: flexure 1.725 34.5 62.1 56.34 

int. girder: shear 5.4 108.0 194.4 176.4 

serviceability 1.487 29.7 53.53 48.56 
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between the load rating and the reliability index. 

5.4.1   Random Variables 

The first step in this process is to define the random variables and the 

nature of their distributions. In this study, dimensions that can be physically 

measured will be considered deterministic such as the spacing and length of 

girders and the dimensions of the steel girder cross sections. Dimensions which 

cannot be easily measured such as the spacing of reinforcement in concrete and 

dimensions which may vary throughout the structure such as concrete cover 

and asphalt thickness will be random. 

Wherever possible, the random variables and their uncertainties will 

be taken from the literature. There have been an increasing number of reli- 

ability studies which quantify most of the random variables needed for these 

computations. While they may not apply perfectly to bridge E-17-AH, they 

are the most realistic values currently available without conducting a site spe- 

cific investigation. 

Table 5.2 shows the random variables that will be used, their dis- 

tribution, and the source from which they were taken. In many cases, these 

variables were described by a bias factor and coefficient of variation 6. The 

bias factor is a ratio between the mean value of the random distribution and 

the deterministic value of the variable. The mean value of the distribution 

which is needed for RELSYS is obtained by multiplying the bias factor by the 

deterministic quantity, usually taken from the bridge drawings [CSHD 1941]. 
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Similarly, the standard deviation of the distribution is obtained by multiplying 

the mean value of the distribution by the coefficient of variation. 

There are different types of uncertainties to consider such as material 

strength, dimensions that cannot be easily measured, live loads, and unit 

weight of materials. In some cases where no information was available on 

the uncertainty of a variable, such as the continuity factor C/ or the impact 

factor Ij for very short spans, the quantity was considered deterministic. The 

symbols used for these variables either apply to that variable directly (i.e., 

Fy or Mtrk-i) or use the symbol A (i.e., Xdeff 
or Konc) which indicates an 

uncertainty factor. 

Model uncertainty is included whenever possible. The equations for 

impact, distribution factors, moment and shear capacity are simplified models 

which attempt to describe the real world effect. As such there is some un- 

certainty associated with that model. The model uncertainty is considered by 

using the variables directly (i.e., DFi or Ibeam) or by using an uncertainty factor 

7 (i.e., jmSg). The description of these variables and their assigned numbers 

(used in the RELSYS program) are listed in Table 5.3. Some of these random 

variables will not be introduced until later in the chapter. These random vari- 

ables are those needed to analyze the bridge prior to any deterioration. As the 

deterioration of the bridge is analyzed over time, additional random variables 

will be introduced. 

5.4.2   Limit State Equations 
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Table 5.2:    Random Variables in System Reliability Analysis of 

Colorado Highway Bridge Number E-17-AH 

Var. Determin. Random Source Bias 5 

"rebar 1.0 N[1.0, .015] Nowak et.al. [1994] 1.0 .015 

fy 50ksi N[56.0, 6.16] Nowak [1995] 1.12 0.11 

^deff 1.0 N[1.0, .02] Lu et.al. [1994] 1.0 .02 

^slab 9.875 in N[9.875, 0.4] Nowak [1995] 1.0 .0405 
HMA 3 in N[3.0, 0.75] Nowak [1993] 1.0 0.25 

^mfc 1.0 N[1.02, .061] Nowak-Yamani [1995] 1.02 .06 
Atrk 1.0 N[1.27, .036] Nowak [1993] 1.0 .028 

V* trk—i 1.0 N[1.27, .036] Nowak [1993] 1.0 .028 
F 33 ksi N[36.63, 4.21] Nowak [1995] 1.11 .12 

DFi 1.212 N[1.309, .163] Zokaie et.al. [1991] .926 .124 
DFi_e 1.06 N[1.14, .142] Zokaie et.al. [1991] .926 .124 
DFe 0.090 N[0.982, .122] Zokaie et.al. [1991] .926 .124 

■'■beam 1.296 N[1.14, .114] Nowak et. al. [1991] .880 0.1 

^steel 132 plf N[135.96, 10.9] Hendawi [1994] 1.03 0.08 

MU-i 259.0 ft-kip N[435.6, 14.76] Nowak [1993] 1.68 0.033 

f'c 3 ksi N[2.76, .497] Nowak et.al. [1994] .92 0.18 

"■asph 1.0 N[1.0, 0.25] Nowak [1993] 1.0 0.25 

"■cone 1.0 N[1.05, 0.105] Nowak [1993] 1.05 0.10 

^steel 1.0 N[1.03, 0.082] Nowak [1993] 1.03 0.08 

Trrasg 1.0 N[1.14; .137] Nowak [1995] 1.14 .12 

7m/g 1.0 N[l.ll; .128] Nowak [1995] 1.11 .115 
V* rtrk—e 1.0 N[0.905, 0.064] Nowak [1993] 1.0 .071 

Mt*rk„e 259.0 ft-kip N[306.0, 22.76] Nowak [1993] 1.35 0.12 

Tmsc 1.0 N[1.075, .108] Nowak-Yamani [1995] 1.075 .10 
Av/s .178 in N[.178, .00711] Lu et.al. [1994] 1.0 .04 

'Ymcc .85 N[.85, .085] Nawy [1990] 1.0 .10 

Es 29,000 ksi N[29.0, 1.74](103) Tabsh-Nowak [1991] 1.0 .06 
* Varial )le is based on the 50 year load 
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Table 5.3:    Variables in System Reliability Analysis of Colorado 

Highway Bridge Number E-17-AH 

Variable Random Meaning 

"frnfc 

"■rebar 

fv 
Xdeff 

fc 
"asph 

"cone 

^trk 

Fy 

'Ymsg 

Asteel 

Vtrk-i 

DFi 

*beam 

Imfg 

Mtrk-i 

DFe 

DF^e 

Vtrk-e 

Mtrk-e 

Es 

'Ymsc 

Av/s 

'Ymcc 

vm(l) 

vm(2) 

vm(3) 
vm(4) 

vm(5) 
vm(6) 

vm(7) 

vm(8) 

vm(9) 

vm(10) 
vm(ll) 

vm(12) 

vm(13) 

vm(14) 

vm(15) 

vm(16) 
vm(17) 

vm(18) 

vm(19) 
vm(20) 

vm(21) 
vm(22) 

vm(23) 
vm(24) 

vm(25) 

Model uncertainty factor: concrete flexure, deck 

Uncertainty factor: reinforcing steel area in concrete 

Yield stress of steel reinforcing in concrete deck 
Effective depth of reinforcing steel in deck 

28 day yield strength of concrete 
Uncertainty factor: weight of asphalt on deck 

Uncertainty factor: weight of concrete on deck 

Uncertainty factor: HS-20 truck in analysis of deck 

Yield strength of steel in girders 

Model uncertainty factor: shear in girders 
Uncertainty factor: weight of steel girders 

Uncertainty factor: live load shear on interior girders 

Uncertainty: live load girder distribution, interior girders 

Uncertainty factor: impact on girders 

Model uncertainty: flexure in girders 

Uncertainty factor: live load moment on interior girders 
Uncertainty: live load girder distribution, exterior girders 

Uncertainty: live-load distribution, int-ext. girders 

Uncertainty: live-load shear, exterior girders 

Uncertainty: live-load moment, exterior girders 
Modulus of Elasticity, steel 
not used 

Model uncertainty: shear in concrete 

Area of shear reinforcement/ bar spacing 
Model uncertainty: eccentricity in short columns 
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The limit state equations for each failure mode (slab, moment in 

interior girder and shear in interior girder) need to be developed. This in- 

volves combining the random variables with the load rating equations al- 

ready used. Recalling that a limit-state equation is always in the form of 

Capacity — Demand, a positive result indicates survival and a negative re- 

sult represents failure of the component. A result equal to zero indicates a 

point on the failure surface. 

For the slab which was only analyzed for moment capacity, the gen- 

eral form of the limit state equation would be 

g{\) = Mcapadty ~ MDemand = Mu - Mdl - M« = 0 (5.28) 

Recalling Eqs. 5.4, 5.4, and 5.5, the equation for ultimate moment 

capacity Mu can be expressed by substitution as 

_Atfydeff        a\Py 
Mu~       12 244.8/^ [^> 

The random variables which account for the area of tension steel in a 

one-foot section of slab At and the effective depth of the slab deff are expressed 

as 

At   =   (.62in2)\rebar 

deff   =   (6.75m)Arfe// 

By substitution into Eq. 5.29, 

,, r-62Are6ar/2/(6.75Ad//)      (.62) Xrebarfy 

12 244.8/'c 
.3844AjU^2. 

244.8/' 
7m/c[-349Are6ar/i,Ade// -      0A/^ v] (5.30) 
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Using Eq. 5.6 and substituting for the random variables, the equation for the 

dead load moment Md[ becomes 

ws2Cf      w(6.187ft)2 (.8) 
Mdi   =    nt nnL = —     ' = .003817^ 

8(1000) 8000 

=   .003817(uw + wasph) = .003817(36Aasp/l + 123.44Aconc) 

=   .137Xasph + A71Xconc (5.31) 

Similarly, using Eq. 5.8 and substituting random variables, the resulting equa- 

tion for the live load moment on the slab is 

Ltrk(s + 2)              16Atrfc(6.187 + 2)/oWi ^ 
Mu   =    32 CfIf = - (.8)(1.3) 

=   4.27Airyt (5.32) 

By substituting the results from Eqs. 5.30, 5.31, and 5.32 into Eq. 5.28, 

the final limit state equation for failure of the slab due to moment that will 

be used for a reliability analysis is: 

^844A2      f2 

0(1) = 7m/c[-349Are6ar/yA/je// 244 8 f°r " ^ --l37XasPh - .471Aconc-4.26Atrfc 

(5.33) 

The exact same process is used to generate the limit state equa- 

tions for failure due to shear and moment in the interior girders. The limit 

state equation for shear g{2) is obtained by substituting random variables into 

Eqs. 5.11, 5.15, and 5.19 for Vu, Vdi, and Vu respectively. 

g(2)     =     Vcapacity ~ VDemand = Vu — Vdl — Vu = 0 

=   10.55Fy7msff — 18.04Aconc — 5.26Xasph — 2.89Astee; — 2S.33Vtrk-iD Filbeam 

(5.34) 
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The limit state equation for moment in the interior girder is obtained by 

substituting random variables into Eqs. 5.22, 5.23, and 5.25 for Mu, Mdl, and 

Mu respectively. 

g(3)    =    Mcapacity - MDemand = Mu - Mdl -Mu=0 

=   39.8Fyjmfg - 197.65Aconc - 57.64Xasph - 31.7Xsteei - Mtrk„iDFiIbeam 

(5.35) 

5.4.3   Reliability Results For An HS-20 Truck 

Using the limit state equations for the slab and girder shown in 

Eqs. 5.33, 5.34, and 5.35 and the values for the random variables shown in 

Table 5.2, the reliability with respect to each failure mode is computed. The 

only exception is the live load which is initially assumed to be a deterministic 

AASHTO HS-20 truck. Since the load rating was computed based on the HS- 

20 truck, this will allow a valid comparison. Using RELSYS, the reliability 

indices for the slab, girder (shear), and girder (moment) were ß = 6.72, 6.81, 

and 4.00 respectively. A comparison with the load rating results is shown in 

Table 5.4. 

The major difference between the reliability and load rating results is 

the relative disparity in importance of the slab and girder-shear failure modes. 

The load rating indicates that the slab can safely carry less than half the 

load that the girder can sustain with respect to shear failure (i.e., HS 29.8 

vs. HS 64.6). However, the two failure modes have almost equal reliabilities. 
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Table 5.4: Comparison of Load Ratings to Reliability for Col- 

orado Highway Bridge E-17-AH Using a Determinis- 

tic HS-20 Truck 

Failure Inventory Operating Reliability 

Mode Rating (HS) Rating (HS) Index (ß) 

slab 29.8 49.6 6.72 

int. girder: shear 64.6 108.0 6.81 

int. girder: flexure 20.7 34.5 4.00 

serviceability 17.8 29.7 - 

system 17.8 29.7 4.00 

Having used identical equations, it demonstrates the effect that the relative 

uncertainty of the individual variables has on the results. 

Taking the lowest component load rating as the load rating of the 

bridge is not a conservative assumption. The bridge at this point would un- 

doubtedly be modeled as a series system as shown in Fig. 5.13 where failure of 

any of the components would constitute failure of the bridge. Taking the reli- 

ability of the weakest member as the reliability of the bridge assumes perfect 

correlation between the failure modes. Any partial correlation between failure 

modes would result in a lower system reliability. In this particular example, 

however, the point is not illustrated because the reliability of the girder with 

respect to flexure is so much lower than the reliability of the other two fail- 



232 

ure modes, that the system reliability index is 4.0. If the reliabilities of the 

components were closer together, the system reliability index would be lower 

than any of the individual component reliabilities. The load rating approach 

remains conservative in this case by including the serviceability criterion which 

dominates. 

Slab     Girder-shear       Girder-moment 

g(l) g(2) g(3) 

Figure 5.13:    Series Model of Bridge E-17-AH Based on Three 

Failure Modes 

5.4.4   A Reliability-Based Approach to Inventory and 
Operating Load Ratings 

A load rating analysis informs the bridge manager which trucks can 

safely cross a particular bridge. In the case of Bridge E-17-AH, for example, it 

was found that the maximum load (i.e., operating rating) that one should take 

across the slab is an HS 49.6 equivalent truck while the girder with respect to 

shear could handle an HS 108.0 equivalent truck. It seems logical then that a 

reliability analysis with an HS 49.6 truck crossing the slab and an HS 108.0 

truck crossing the girder would produce similar levels of safety with respect to 

these failure modes. This is not the case. 

Table 5.5 shows the reliability results with respect to the three failure 

components from Fig. 5.13 for a deterministic HS-20 truck and for determin- 
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istic truck equivalents to its respective inventory and operating load ratings. 

For example, the slab was subjected to an HS 29.8 truck (inventory rating) 

and an HS 49.6 truck (operating rating). Table 5.5 shows that the levels of 

safety are not the same for the respective failure modes when subjected to their 

inventory and operating loads. In fact, the level of disparity is not the same 

looking at the inventory and operating results. For example, when the girder 

is subjected to its respective inventory load with respect to shear and moment, 

the girder is safer with respect to shear (ßShear — 4.21, ßm0ment — 3.89). When 

subjected to their operating loads, the girder is safer with respect to moment 

\Pshear = ^-41), Pmoment — .6.40J. 

The different failure components should produce similar levels of 

safety when subjected to their inventory or operating loads. A reliability- 

based approach to load rating would provide this. For example, the inventory 

rating could be defined as the HS truck that would provide a reliability index 

ß = 4.0 and the operating rating as the HS truck that produces ß = 2.5. 

This approach would clearly produce different HS ratings than currently ex- 

ist, would account for the relative uncertainty of random variables, and would 

produce similar levels of safety by definition. 

5.5   Live Load Models 

The reliability analysis so far has used a deterministic HS-20 truck 

as the live load on the bridge. In reality, the live load traffic on the bridge 

is one of the most uncertain random variables in the analysis. A number of 

studies and live load models have been proposed (i.e., Ellingwood et ai. [1982], 
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Table 5.5:    Reliability Associated With the HS-20 Truck, the In- 

ventory Rated Truck and the Operating Rated Truck 

Failure HS-20 Inventory Operating 

Mode Load Load Load 

slab 6.72 5.64 3.41 

int. girder: shear 6.81 4.21 2.40 

int. girder: flexure 4.00 3.89 2.46 

Goble et ai. [1992], Tan [1990], Bailey [1996]), usually as the result of field 

observations or weigh-in-motion studies. Quantifying the live load is difficult 

because the live load effect is a combination of individual truck weights, the 

spacing of individual truck axles, and the relative position of trucks on the 

bridge. This study will consider two of these models: Ghosn & Moses [1986] 

and Nowak [1993]. 

5.5.1   Ghosn Live Load Model 

The Ghosn live load model was based on a weigh-in-motion study in 

conjunction with the FHWA and Ohio DOT [Ghosn 1981]. A weigh-in-motion 

study obtains truck weights in an undetectable manner using traffic sensors 

to obtain vehicle speed and axle spacing. Strain gages measure the effect of 

traffic on the bridge. The strain records are compared to the influence line of 

the bridge to obtain truck axle weights. The weigh-in-motion data ultimately 
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is used to develop traffic patterns which describe the position and weight of 

the vehicles going over the bridge. 

The purpose of the live load model is to calculate the maximum live 

load expected at different times over the service life of the structure. Based 

on the results from a large number of sites, Ghosn and Moses [1984] devel- 

oped a numerical integration approach to calibrate a load prediction formula 

applied to a range of span lengths. The result was a load model formula, best 

summarized in Ghosn and Moses [1986] which computes the mean value of the 

maximum bending moment M in 50 years as follows: 

M = amW*HgiGr (5.36) 

where the listed variables include truck configuration, girder distribution, span, 

impact and growth. Looking at the variables individually and applying them 

to bridge E-17-AH, a is the only deterministic variable and is dependent on the 

truck configuration and the span. This model used two types of trucks: single 

and semi-trailer. For shorter spans (less than 60 ft (18.3 m), the single truck 

configuration was dominant. The variable m is a random coefficient based on 

span length and describes the variation of load effect for a given type truck. 

The values for a, m, and Vm (the coefficient of variation of m) are interpolated 

from Table 5.6 reprinted in part from Ghosn & Moses [1986]. 

Using a bridge span L = 43.833 ft (13.36 m) for Bridge E-17-AH and 

interpolating between spans of 40 ft (12.19 m) and 60 ft (18.29 m) on Table 

5.6, the computed variables are a = 9.52 kip — ft /kip (2.90 kN — m/kN), 
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Table 5.6:    a and m Factors for Ghosn Live Load Model Based 

on Bridge Span [Ghosn and Moses 1986] 

Span (ft) a (kip — ft/kip) m Vm Type of Truck 

30 

40 

60 

6.07 

8.57 

13.57 

0.92 

0.93 

0.94 

0.15 

0.12 

0.06 

Single 

Single 

Single 

m = .932, and Vm = 0.109. The variable W* is the 95th percentile weight 

for the dominant type truck for the bridge span. For the short span in this 

case, the single truck dominated which produced a 95th percentile weight 

W* — 47 kips and Vw* — 0.15. A headway factor H includes the likelihood of 

overloading by having closely spaced vehicles at the extreme tail of the weight 

distribution on the bridge. Since H is dependent on span and traffic volume, 

its value is based on the interpolation from Table 5.7 also reprinted in part 

from Ghosn and Moses [1986]. 

Average traffic volume is defined as 2000 trucks/day and low volume 

is considered 200 trucks/day. The average daily traffic (ADT) over Bridge 

E-17-AH is 8500 vehicles/day [CDOT 1995b]. State Highway 33 is classified 

as an Urban road (not interstate) which according to Table 5.8 [AASHTO 94 

(C3.6.1.4.2)] would provide an estimated average daily truck traffic (ADTT) 

percentage as 10% or 850 trucks/day. The traffic over the bridge is somewhere 

between low and average. For average traffic volume, interpolation from Table 
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Table 5.7: H Factors for Ghosn Live Load Model Based on 

Bridge Span and Traffic Volume [Ghosn and Moses 

1986] 

Span (ft) Heavy Volume Average Volume Low Volume 

40 

100 

2.79 

2.93 

2.69 

2.80 

2.41 

2.51 

5.7 results in H = 2.70 and for low traffic volume, H = 2 Al. In both cases, 

VH = 0.10. 

Table 5.8:    Average Daily Truck Traffic as a Function of Average 

Daily Traffic on Different Highways 

Class of Fraction of 

Highway Trucks in Traffic 

Rural, interstate 0.20 

Urban, interstate 0.15 

Other rural 0.15 

Other urban 0.10 

The distribution of the load to the girders is accounted for by g 

(Eq. 5.36) which makes the AASHTO distribution factor a random variable 

by applying a bias factor and coefficient of variation [Moses and Verma 1987]. 
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The AASHTO distribution factor DF for the distribution of four wheel lines 

and a girder spacing S = 6.667 ft (2.032 m) is 

5/5.5 6.667/i/5.5 
DF = -—-+——. = J-l = .3030 5.37 

# wheel lines 4 

The bias factor for steel girders is bg = 0.9 with a coefficient of variation 

of 0.13.   This results in values of g = bg(DF) = 0.9(.3030) = .2727 and 

Vg = 0.13.   The dynamic amplification or impact factor i of the vehicles is 

found by transforming the deterministic AASHTO impact factor into a random 

variable where i = 1.11 and Vi = 0.11.  Finally a variable for future growth 

Gr is included to account for the increased gross weight of heavy trucks on 

the highways over time.   The values used by Ghosn [1986] were Gr = 1.15 

and VGT = 0.10.   Applying the values for these variables to the Ghosn live 

load model, the fifty year maximum moment M for average traffic volume is 

computed as 

M   =   amW*HgiGr 

=   (9.52/t - Aip/A;ip)(.932)(47ifcip)(2.70)(.2727)(l.ll)(1.15) 

=   413.3 ft - kips (560.4 kN - m) (5.38) 

For low traffic the mean maximum moment would be M = 368.7 ft — kips 

(499.9 kN — m). The coefficient of variation of the maximum moment VM can 

be computed for both average and low traffic volume as 

=   v/(0)2 + (.109)2 + (.15)2 + (TO)2 + (.13)2 + (.ll)2 + (.10)2 

=   -259 (5.39) 
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The reliability analysis on the interior girder due to moment failure 

can now be revised using the more realistic Ghosn live load model rather than 

the deterministic HS-20 truck. The live load moment on the bridge for average 

traffic is a random variable with a mean value M = 413.3 ft—kips (560.3 kN— 

m) and a standard deviation aM = (.259)(413.3) = 107.0 ft-kips (145.1 kN- 

m). Recall that for the deterministic HS-20 truck the live load moment was 

Mu = 259.0 ft - kips (351.2 kN - m). 

As expected the reliability of the girder with respect to moment de- 

creased using the Ghosn live load model. Recalling that ß = 4.00 for the girder 

using the HS-20 truck, the reliability index drops to ß = 3.86 for low volume 

traffic and to ß = 3.56 for the average volume traffic. The use of a live load 

model provides a more realistic assessment of bridge safety but different live 

load models do not necessarily produce similar results. 

5.5.2   Nowak Live Load Model 

A live load model which predicts the maximum truck moments and 

shears for different length spans was developed by Nowak [1993]. The study 

covered 9,250 selected trucks from the Ontario Ministry of Transportation data 

base. The data base included number of axles, axle spacing, axle loads, and 

gross weight of the vehicles. The bending moments and shears were calculated 

for each truck in the survey for a wide range of spans. The cumulative dis- 

tribution functions (CDF) of the span moments and shears were plotted on 

normal probability paper for spans ranging from 10 feet (3.05 m) to 200 feet 
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(60.96 m). The maximum moments and shears for different time periods were 

extrapolated from these distributions. 

These CDFs were transformed to a standard normal distribution and 

the coefficients of variation for the maximum shears and moments were deter- 

mined from the slope of the transformation. The end result was a series of 

graphs which provide a ratio of the mean shear and moment for the live load 

model to the shear and moment resulting from the standard HS-20 truck. This 

quantity is the bias factor needed for the random variable. The coefficients of 

variation for the maximum moment and shear are provided on other graphs. 

To read the graphs, one must know only the bridge span and the desired life 

of the bridge. 

The Nowak graphs were based on a measured two week traffic flow 

which equates to approximately 1,000 trucks per day. It is estimated that 

1.5 million trucks will pass over the bridge in five years, 15 million trucks in 

50 years, and 20 million trucks in 75 years. The Nowak graphs are based on 

the statistics of extreme values where the probability of encountering a large 

truck at the extreme tail of the distribution increases as the number of trucks 

passing over the bridge increases. As a result, the mean values of the maximum 

moment and shear increase over time and the coefficients of variation decrease. 

The Nowak graphs can be applied to a specific bridge where the daily 

traffic is known by reading the data for a single truck from the Nowak study 

and applying extreme value statistics to the actual traffic of the bridge under 

consideration. For Bridge E-17-AH which has a span of 43.833 ft (13.36 m), 
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the Nowak graphs [Nowak 1993] show that the ratio of the shear caused by 

one truck in the live load study to the shear caused by an HS-20 truck is 

0.52 and the coefficient of variation is 0.29. Similarly, the ratio of the positive 

moment on a simple span for a single truck caused by the live load model to 

the moment caused by the HS-20 truck is 0.65 and the coefficient of variation 

is 0.32. As expected, the HS-20 truck provides a conservative estimate of the 

single truck crossing the bridge. The AASHTO HS-20 truck does not account, 

however, for the increased probability that an extreme value truck will cross 

the bridge as the number of occurrences increases. 

Let the initial distribution of trucks crossing the bridge have a cu- 

mulative distribution function (CDF), Fx(x), and probability density func- 

tion (PDF), fx(x). The exact distribution of the maximum truck crossing the 

bridge CDF, FMn, and PDF, fMn, is a function of the number of occurrences 

n [Ang k Tang 1984] 

FMn(m)   =   [Fx(m)r 

/M„M   =   n[Fx{m)f-lfx{m) (5.40) 

Because the exact distribution is a function of another distribution and can 

contain many random variables, the computations can be very cumbersome. 

Fortunately, as the number of occurrences becomes larger, the extreme distri- 

bution approaches an asymtotic form which is not dependent on the original 

distribution. The normal and lognormal distributions approach a type I ex- 

treme value distribution with negligible differences as n is greater than 25. 

The type I extreme value distribution is only a function of the number of 
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occurrences n, the mean value of the initial distribution //, and the standard 

deviation of the original distribution a [Ang & Tang 1984]. 

FMn(rn)   =   e 

fMn{m)   =   {^)el(^)(m-»-vun]e-e^-^ (541) 

where 

an   =   \j2ln(n) 

2ar> 'n 

To apply the live load model to the reliability analysis of the bridge, only the 

mean and standard deviation of the extreme distribution are needed. Using 

the central and dispersion characteristics of the type I extreme distribution, 

the mean fiMn and standard deviation aMn can be computed as [Ayyub and 

White 1995] 

ßMn   =   oun + fi + {ja/an) 

oun   =   (7v/V6)(a/an) (5.43) 

where 7 = 0.577216 (the Euler number). 

Eq. 5.43 can be used to compute the mean and standard deviation 

of the live load effects over any time period using the values from the Nowak 

graphs and the number of occurrences. In order to compare the reliability 

results with those from the Ghosn model, a time period of 50 years is chosen. 

Considering the ADTT of 850 trucks per day, the number of occurrences n is 

n = 850trucks/day(3Q5.25days/year)(50years) — 15, 523,125 trucks (5.44) 
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Considering the 50 year maximum moment provided by this live load 

moment, recall that the Nowak graphs provide a ratio between the live load 

moment and the HS-20 moment of 0.65 and a coefficient of variation of 0.32. 

The HS-20 truck produced a live load moment of 259.0 ft - kips (351.2 kN - 

m) (Eq. 5.24) which results in the mean /J, and standard deviation a for the 

moment caused by a single live load model truck as 

H   =   .65(259.0/* - kips) = 168.35 ft - kips (228.25 kN - m) 

a   =   (168.35/* - kips)(0.32) = 53.87 ft - kips (73.03 kN - m) (5.45) 

By substituting these values for n, \x, and a into Eqns. 5.42 and 

5.43, the mean value for the 50 year maximum moment Mtrfc_, is 435.6 ft — 

kips (590.6 kN — m) and the standard deviation crM(r/._. is 14.76 ft — kips 

(20.01 kN — m). These values are used in the reliability analysis of g(3), the 

most critical girder with respect to moment (see Eq. 5.35). The values for 

Mtrk-i and crMtrk_. for any time period can be seen in Fig. 5.14. 

Through a similar analysis using the shear values from the Nowak 

graphs, the mean value for the 50 year maximum shear is 35.94 kips (159.9 kN) 

and the standard deviation is 1.02 kips (4.54 kN). Recalling from Eq. 5.16 

that the live load shear caused by an HS-20 truck is 28.33 kips (126.0 kN), the 

shear factor Vtrk-i in Eq. 5.34 and its standard deviation oVtrk_i are computed 

as 

Vtrk-i   =   35Mkips/28.33kips = 1.27 

aVtrk_t   =   1.02kips/35Mkip(1.27) = .036 (5.46) 
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Figure 5.14: Maximum Moment Over Time for Interior Girders 

in Bridge E-17-AH Based on the Nowak Live Load 

Model 



245 

The shear data from the Nowak graphs can also be used to compute 

the equivalent truck 50 year live load to be used in the reliability analysis for 

the slab. Using the shear data for a single truck from the Nowak graphs, back 

calculating the weight of the truck and substituting into Eqs. 5.43 and 5.42, 

the mean value of a wheel line for the 50 year truck is 45.65 kips (203.1 kN) 

with a standard deviation of 1.31 kips (5.83 kN). Since the weight of a wheel 

line on an HS-20 truck is 36 kips (160 kN), the uncertainty factor associated 

with the live load truck Xtrk used in Eq. 5.33 becomes 

\rk   =   45.65kips/36.0kips — 1.27 

aXtTk   =   1.31kips/A5.Q5kip(l.27) = .036 (5.47) 

The mean values and the dispersion for the weight of the truck and the shear 

caused by the truck in the interior girders can be seen in Fig. 5.15. 

The reliability analysis of the bridge was completed using the Nowak 

live load model with respect to each of the three limit state equations, g(l), 

g(2), and g(3) (Eqs. 5.33, 5.34, and 5.35) and to the system as modeled in 

Fig. 5.13. The reliability index with respect to the slab was ß = 3.21 and to 

the interior girder with respect to shear and moment was ß = 6.22 and ß = 

2.44, respectively. The system reliability was dominated by the interior girder 

moment g(3) where ßsys = 2.43. The Nowak live load model reliability results 

are similar to the reliability of the operating load rating (Table 5.5). Table 5.9 

shows a comparison of the reliability results between the deterministic HS-20 

truck, the Ghosn 50 year live load, and the Nowak 50 year live load. 
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terior Girders (bottom) Over Time in Bridge E-17- 

AH Based on Nowak Live Load Model 
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Table 5.9:    Reliability Index (/5) Associated With Load Ratings 

and Different Live Load Models 

Failure HS-20 Ghosn 50 Ghosn 50 Nowak 50 

Mode Load Year (low) Year (avg) Year 

slab 6.72 3.21 

girder: shear 6.81 6.22 

girder: flexure 4.00 3.86 3.56 2.44 

system 4.00 2.43 

The increased live load has a much larger effect on some failure modes 

than others. The reliability of the slab decreased significantly under the Nowak 

live load model while the reliability of the girder with respect to shear changed 

much less. While the HS-20 truck is conservative with regard to the single 

truck in the live load model, the HS-20 truck becomes unconservative when the 

large number of truck occurrences increases the likelihood of encountering an 

overweight truck at the tail of the distribution. The live load models account 

for this important fact. Unfortunately, the two live load models considered 

here did not produce similar results which indicates that further study and 

data collection in this area are needed. The Nowak live load model will be 

used for the remainder of this study because it is the more recent study and 

appears to be the more conservative model. 
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5.6   Other Failure Modes 

The load rating classification includes only the failure of the slab 

and the failure of the most critical girder due to shear and moment. The 

substructure is not included in the load rating analysis. Therefore a number 

of possible failure modes are not considered. The load rating analysis does 

not include any effects of redundancy in a structure nor does it consider the 

correlation between failure modes. Using the reliability approach, this section 

will address these problems by incorporating additional failure modes and will 

model the structure so that correlation and redundancy are included in the 

analysis. Limit state equations will be developed for the additional failure 

modes and the individual component reliabilities will be computed. The sys- 

tem reliability will be a function of the bridge model, the random variables, 

and the component reliabilities. 

5.6.1   Additional Failure Modes in the Superstructure 

So far, only the failure reliability of the interior girders with re- 

spect to shear and moment has been considered in the analysis of Bridge 

E-17-AH. At this point, the girders will be divided into three types: interior, 

interior-exterior, and exterior as shown in Fig. 5.16. The limit state equations 

(Eqs. 5.34 and 5.35) and reliabilities for the interior girders due to shear and 

moment have already been calculated. 

The exterior girders have a different size (WF33xl25) from the other 

girders and therefore have a different plastic section modulus Z and different 
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terior Girders on Bridge E-17-AH 
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web dimensions which will affect the moment and shear capacities of these 

girders. The exterior girders support the pedestrian walkway and should be 

capable of supporting a vehicle in an emergency situation. Because of the 

sidewalk and the reduced tributary area, the dead load will also be different 

on the exterior girders. 

5.6.1.1   Moment and Shear on Exterior Girders 

The dead load moment M<# is a function of the concrete slab, the 

railings, and the self-weight of the steel 

MrJconctS i' 
dl     =     [—TZ h Wrail + Wsü\-- 

1501b/ft3(9 + 10.375m) (2.5/t)Aconc        4160/6 
^ 12 + U37.33/r 

(43.833/t)2 

+^b/ft)Xsted]8{mm/Hp) 

=   145.32AC0„C + 37.3Xsteel (5.48) 

The live load moment M\\ is the product of the static moment caused 

by the live load truck Mtrfc_e, the impact factor i&eam and the girder distri- 

bution factor DFe. The Nowak live load model is used for the exterior girder 

live load. The only difference is the number of occurrences. Rather than using 

the ADTT of 850 trucks/day, it is assumed that a truck will have to drive 

up on the 10 inch sidewalk once every six months. Using Eqs. 5.42 and 5.43 

for a 50 year time period, the number of occurrences will be n = 100 and 

the values taken from the Nowak graphs for the single truck are the same as 

for the interior girders. For the 50 year load, this results in a mean maxi- 

mum moment Mtrk_e = 416.38 ft - kips (564.53 kN - m) and a standard 
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deviation of <JMtrk_e = 10.75 ft — kips (14.57 kN — m). Recall that for 

the interior girder, these values were 435.6 ft — kips (590.6 kN — m) and 

14.76 ft - kips (20.01 kN - m), respectively. 

Because of the five foot spacing between the exterior girder and the 

interior-exterior girder, the deterministic girder distribution factor DFe is 

DFe = s/5.5 = 5/t/5.5 = 0.909 (5.49) 

Using the bias factor and covariance from Zokaie et al. [1991] as shown in Table 

5.2, the random variable DFe has a mean of 0.982 and standard deviation of 

0.122. The impact factor is the same as for the interior girder. The live load 

moment Mu for the exterior girder is 

Mu = MtrkJbeamDFe (5.50) 

The only change in the ultimate moment capacity for the exterior 

girder is the plastic section modulus Z = 438.46 in3 (7185.1 cm3) for the 

WF33xl25 steel girder. 

438.46m3 

Mu = ZFyXmfg =   12-   ,,t FyXmfg = 36MFyXmfg (5.51) 

The limit state equation g(A) for failure due to moment on an exterior girder 

becomes 

g(A)   =   Mu-Mdl-Mu = 0 

=   36.54Fj/Ym/p - 145.32Aconc - 37.3Astee( - Mtrk_eDFeIbeam (5.52) 
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Using the exact same reasoning and assumptions as for moment, the limit 

state equation for the failure of the exterior girder due to shear g(5) is 

<?(5)   =   Vu-Vdl-Vu = 0 

=   10.38Fy7TO.sg — 13.27Aconc — 3.4Asiee; 

-28.33Vtrk„eDFeIbeam (5.53) 

5.6.1.2   Moment and Shear on Interior-Exterior Girders 

The only major differences between the interior girders and the interior- 

exterior girders are the girder distribution factor, the dead load due to a 

portion of the concrete sidewalk, and the difference in girder spacing.   The 

spacing for the girder distribution factor is the average between 5 ft (1.52 m) 

and 6.667 ft (2.03 m). The deterministic distribution factor DFi_e is 

S       (5 ft + 6.667ft) 
m~* = 5^ = 2p) = L°6 (5"54) 

Using the random bias and covariance found in Table 5.2 [Zokaie et al. 1991], 

the mean and standard deviation for DF^e are 1.14 and 0.142 respectively. 

The limit state equation for failure of an interior-exterior girder due to moment 

g(6) becomes 

g(6) = 39.8Fyjmfg — 244.08Aconc — 28.8Aasp/l — 31.7Astee; — Mtrfc_jDFj_e/beam 

(5.55) 

and the equation for failure due to shear g(l) is 

g(7) = 10.55Fj/7ms5 — 22.29Aconc — 2.§3\asph — 2.&9\steei — 28.33Vtr/c_,.DF;_e/f)eQm 

(5.56) 
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5.6.2   Failure Modes in the Substructure 

Although the substructure is ignored in the load rating analysis be- 

cause it rarely governs, there are a number of strength modes in which the 

substructure could fail. This section examines potential failure modes such as 

shear and moment in the pier cap, crushing of the pier columns, and failure in 

the footing. The list is not all-inclusive. Failure modes such as bearing failure 

of the soil and failure of the abutment piles, for example, were not consid- 

ered. In each case, the design equation is used to assess capacity and the load 

model determines the demand. Both are used to form a limit state equation 

from which a reliability analysis can be performed. Accurately defining the 

uncertainty in the random variables is the most difficult aspect of the process. 

5.6.2.1   Failure Due to Shear,  Positive Moment,  and 
Negative Moment in the Pier Cap 

The pier cap is modeled as an indeterminate beam as shown in 

Fig. 5.17 where the load is transferred from the girders. The beam reaction 

supports represent the four columns in the pier. The source of the load is the 

dead load weight of the asphalt surface, concrete slab and steel girders; the 

live load of the trucks passing over the bridge; and the self-weight of the pier 

cap. These loads will result in different shear and moment demands through- 

out the pier cap. An analysis is required to find the points of maximum shear, 

positive moment, and negative moment. The bending steel and cross-sectional 

dimensions are constant throughout the pier cap so the moment capacity is 
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constant throughout. The spacing of the shear stirrups is different in different 

sections of the pier cap which results in differing shear capacities. This section 

will develop limit state equations for failure of the pier cap with respect to 

shear g(8), positive moment g(9), and negative moment <?(10). 
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Figure 5.17:    Critical Loading Condition on Pier Cap Modeled as 

an Indeterminate Beam 

To determine the demand on the pier cap, shear and moment dia- 

grams are needed. Because the different live and dead loads all have different 
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uncertainties associated with them, each load is considered separately and 

composite shear and moment diagrams are developed from superposition of 

the individual effects. The dead load of the asphalt, slab, and girders is trans- 

ferred to the pier cap as a point load through the bearings at the ends of the 

girders. These point loads were computed earlier as dead load shear reactions 

based on unit weight of material and tributary area. Table 5.10 shows the con- 

tributions of each of the materials. The steel weight is greater in the lighter 

exterior girder because the metal railing is included in the quantity. 

The live load is also transferred as a point load. The assumption 

was made that the worst case represented by four trucks side-by-side passed 

over the bridge simultaneously. The number of occurrences where this case 

exists is far less than that of a single truck going over the bridge. Some studies 

[Nowak 1993] have included this decreased likelihood of multiple presence and 

the correlation between the vehicles. For example, Nowak [1994] concluded 

that on a two lane bridge, two trucks were side-by-side as they passed over the 

bridge in only one out of every 50-100 cases. This study used the Nowak [1994] 

assumptions and treated the east and westbound portions as two separate two- 

lane roads where the trucks were side-by side one out of every 50 times and the 

two separate lanes coincided one out of every 100 times that the maximum two- 

lane condition was met. This resulted in the four lane side-by-side conditions 

occurring one out of every 5,000 occurrences of a single truck passing over the 

bridge which is still conservative. 

The self-weight of the pier cap is treated as a distributed load. Based 
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on the cross-sectional dimensions of the pier cap shown in Fig 5.19, the area 

is 11.58 ft2 (1.076 m2). Using a unit weight of reinforced concrete 7corac = 

150 lb Ift3 (2403 kg/m3), the distributed load is 1.74 kips/ft (25.39 kN/m). 

The pier cap has more concrete at the end (Fig. 5.4) which results in a dis- 

tributed load of 1.96 kips/ft (28.60 kN/m). 

36" 

.2. #9bars (As = 1.0in) 

.2 #4 bars (Ag = .2 in) 

#9bars (A^ 1.0 in) 

#7bars (A^.6in) 

Figure 5.18: Cross-section of Pier Cap 3 in the Positive Moment 

Area (Note there are 8-#9 bars on the top row in 

the negative moment region) 

The composite shear diagram shown in Fig. 5.20 for the most critical 

four truck case is the sum of the separate components. The maximum shear 

occurs at the interior column supports. Fig. 5.21 shows the composite moment 
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Figure 5.19: Cross-section of Pier Cap 2 in the Positive Moment 

Area (Note there are 8-#9 bars on the top row in 

the negative moment region) 
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Table 5.10: Critical Loading on the Pier Cap 

Load Int. Girder Int.-Ext. Gird. Ext. Girder Dist. Uncert. 

Source Point Load Point Load Point Load Load Factor 

(kips) (kips) (kips) (kips/ft) 

asphalt 10.52 5.26 - - ^asph 

concrete slab 36.08 44.58 26.54 - ^■conc 

steel girder 6.68 6.57 7.14 - ^steel 

live load 44.5 38.9 33.4 - ^trk 

pier (int) - - - 1.7'4 A cone 

pier (ext) - - - 1.96 "cone 

diagram. The largest positive moment occurs where the interior-exterior girder 

meets the pier cap and the largest negative moment occurs at the interior 

column. 

The dead load and live load shear and moment demands for the 

pier cap limit state equations can be found from the values on the shear and 

moment diagrams at their critical locations multiplied by their respective un- 

certainty factors. The critical location on the shear diagram is not obvious 

because the shear capacity of the beam is not constant due to the variable 

spacing of the shear steel. Fig. 5.22 shows the spacing of the shear steel in the 

pier cap relative to the total shear diagram. The spacing of the shear steel is 

12 inches (30.5 cm) in the area where the shear is either low or where the pier 

cap is directly supported by the column.  The spacing is reduced to 6 inches 
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(15.2 cm) as the shear gets higher near the column supports and is reduced 

further to 4.5 inches (11.4 cm) where the shear is largest. A deterministic 

analysis helped identify the critical portion of the pier cap. 

The largest shear values Vmax read from the shear diagram are 160.6 kips 

(714.3 kN), 120.4 kips (535.5 kN), and 60.5 kips (269.1 kN) in the areas where 

the spacing was 4.5 in (11.4 cm), 6 in (15.2 cm), and 12 in (30.5 cm), respec- 

tively. The shear capacity of the pier cap is the sum of the shear strength of 

the concrete Vc and the shear strength of the steel Vs. The cross section of 

pier cap 3 is shown in Fig. 5.18. 

The shear capacity provided by the steel Vs is given by 

Avfyd _ (,8m2)(50ksi)(37.25m) _ 1490 
5 S S 

where Av = the area of shear steel which in this case is four #4 bars (As = .2m2 

(129 mm2) per bar), fy = the yield strength of the reinforcing steel, d = the 

effective depth of the beam as shown in Fig. 5.18, and s is the spacing of the 

shear reinforcement. 

The shear capacity of the concrete Vc is a function of the 28-day 

compressive strength of the concrete f'c, the width of the beam bw, the effective 

depth d, and a factor A which is equal to 1.0 for normal concrete. 

Vc = 2.0\yf7%d = 2.0(1.0)^OOOpsz3
^QIffW   = 146-9 kiPs (653-4 kN) 

(5.58) 

Table 5.11 shows the results of the deterministic factor of safety analysis for 

the three spacings of shear steel. The section of the pier cap where the spacing 
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Figure 5.22:    Location and Spacing of Shear Steel in the Pier Cap 

Compared with the Locations of Maximum Shear 
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is 4.5 in (11.4 cm) has the lowest factor of safety FS = 2.98 so this will be 

the portion of the beam considered in the reliability analysis. 

Table 5.11:    Deterministic Analysis of the Pier Cap to Determine 

the Most Critical Section With Respect to Shear 

Vmax s Vs vc Vtot = Vs + Vc Factor of 

Safety kips inches kips kips kips 

160.62 

120.38 

60.51 

4.5 

6 

12 

331.1 

248.3 

124.2 

146.9 

146.9 

146.9 

478 

395.2 

271.1 

2.98 

3.28 

4.48 

The limit state equation with respect to failure of the pier cap due 

to shear can now be written. Eqs. 5.57 and 5.58 are used to describe the shear 

capacity where Av/s, fy, and f'c are random variables and Ade,, 
and 7m5C 

are 

uncertainty factors as described in Tables 5.2 and 5.3. 

Vcapacity = Vs + Vc = (37.25 Xde f f -*■ fy + 2.682^)7, (5.59) 

The shear demand is determined by the values on the composite shear diagram 

at the point where the total shear is maximum and the stirrup spacing is 

4.5 in (11.4 cm). The respective shear contributions are multiplied by their 

uncertainty factors. 

Vdemand = I5.78^asph + 68.047conc + 10.027sted + A2.hWtrk-iDFiIheam   (5.60) 
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The limit state equation g(8) becomes 

9(~)     =      'capacity        'demand 

g(8)   =   37.2b\deffAv/sfy-fmsc + 2.682/#ymsc - 15.78Aasp/l - 68.04Aconc 

-10.02Asted - A2.^ViTk-iDFiIheam (5.61) 

The limit state equations for positive and negative moment are easier 

to obtain because the most critical points on the beam are the points where 

the moment is maximum. For the positive moment capacity, Figs. 5.18 and 

5.19 show the dimensions and the placement of steel in the pier caps. After 

verifying that the reinforcement is above the minimum allowed by the ACI 

code, the compression steel does not yield, and that the area of steel is less 

than 75% of the balanced reinforcement [Nawy 1990], the pier cap is treated 

as a singly reinforced beam. The moment capacity is determined in a manner 

similar to the moment capacity of the slab. 

Mcapacity = AJy[d - |] = AJy[d - l^JT^ (5-62) 

Considering that As, fy, and f'c are random variables and there are uncertainty 

factors associated with the effective depth, \deff, 
and with the flexural concrete 

model, 7m/c, as described in Tables 5.2 and 5.3, the moment capacity becomes 

Mcapacity     —     'JmfcAsJyldl.ZbAd^ eff 2(.85)#(36in) 
2 f2 Ail 

=   37.2bjmfcAJyXdeff - .01637m/c^ (5.63) 
Jc 

The moment demand is taken from the composite moment diagram at the 

point of maximum positive moment which is at the interior-exterior girder 
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(see Fig. 5.21). Considering the uncertainty factors associated with the loads 

contributing to the moment, the moment demand becomes 

Mdemand    =     ^-^lasph + 121.4l7conc + 17.187sted + 15.67Vtrk^iDFiIbeam 

+109AlVtrk^DF^Jbeam (5.64) 

By subtracting the moment demand from the moment capacity, the limit state 

equation g(9) for positive moment failure on the pier cap is 

'Y      A2       f2 

0(9)   =   238A~fmfc\rebar\defffy - .6689 7mfc rfarh - 20.61Aa,pfc 
Jc 

— 121.41Aconc — 17.18Asiee; — 15.56Vtrk-iDFiIbeam 

-109AlVtrk.iDFi.eIbeam (5.65) 

The maximum negative moment occurs at the interior column on the 

pier cap.  The top row of reinforcing steel in the negative moment region of 

the pier cap increases to 8-#9 bars. Accounting for the capacity and demand 

due to negative moment in the exact same manner, the limit state equation 

^(lO) for failure of the pier cap due to negative moment becomes 

7     A2      f2 

g(10)   =   280.87m/cAre6ar/,Arfe// - 1.043 Imfc rfarJy - 36.73Aasp/l 
J c 

—174.84ACOnc — 24.32Astee( — 138.6914r/t_jDFjJbeam 

-29.181/trfc_iJDFi_e76eam - 6.68Vtrk-eDFeIbeam (5.66) 

5.6.2.2   Failure Due to Crushing of the Columns 

The pier cap is supported by four columns as shown in Fig. 5.4. The 

distribution of the critical load to the columns is shown in Fig. 5.17 with 
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the interior columns taking a larger share of the load. Since the columns are 

identical, the interior column is the critical column. It would be reasonable to 

perform a reliability analysis on all columns and treat the columns together 

as a parallel system. If the system reliability analysis reveals that crushing of 

the columns is a critical failure mode, then the parallel system analysis would 

be beneficial. 

The columns are braced and tied together by a six foot shear wall 

fixed to the middle of the columns. It is assumed that this large shear wall 

would prevent the column from buckling as a 23 ft (7.01 m) column in either 

direction. For this to occur, the wall would have to buckle with it. Instead, 

the pier column will be divided into an upper column and a lower column, 

with each being analyzed separately. The upper column is not as large but it 

carries less weight. 

Fig. 5.23 shows the cross-section dimensions and placement of steel 

in these tapered square columns. The column width is two feet (0.61 m) at the 

top and increases to 2.91 ft (0.887 m) at the bottom as shown in Fig. 5.23. 

Even modeling the columns as pinned-pinned columns results in a slenderness 

ratio kl/r that is small enough to treat the columns as short columns where 

crushing is the critical failure mode. The capacity of the column Pcapacity is a 

function of the the compressive strength of the concrete f'c and the reinforcing 

steel fy [Nawy 1990]. 

Pcapacity = 0.85[0.85/c(^4conc — Asteei) + Asteeify] (5.67) 

where the outermost factor of 0.85 is included in the ACI code to account 
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for eccentricity in tied columns.  It will be treated as the model uncertainty 

associated with this effect [Nawy 1990]. 

top column 

< 

2.28' 

2.52' 

bottom column ■ 

2.91' 

7' 

< 

10' 

6' 

Figure 5.23:    Dimensions and Placement of Steel in the Top and 

Bottom Columns 

The conservative approach for the top column is to treat it as a 

prismatic square column with a constant depth of two feet. The area of the 

concrete cross-section is Aconc = 576 in2 (3716 cm2) and the area of the longi- 

tudinal reinforcing steel is Asteei = 9.48 in2 (61.16 cm2). The random variables 

contributing to the capacity are f'c, fy, and the uncertainty factors associated 
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with the area of the steel, Xrebar, and model uncertainty, 7mcc, (See Tables 5.2 

and 5.3). 

Pcapadty = 7mcc[489.6/^ - 8.06f^.Xrebar + 9A8fyXrebar] (5.68) 

The demand on the column Pdemand is determined from the composite shear 

diagram (Fig. 5.20) for the pier cap at the point where it connects with an 

interior column. The limit state equation for failure with respect to crushing 

of a top column g(ll) is 

#(11)   =   489.67mcc/g - 8.067mcc/cArebar + 9.487mccArebQr/j/ - 26AlXasph 

— 123.22Acoric — 17.19Xsteei — 66.90T4rfc_jDF,/f,eam 

-%A\Vtrk.iDFi.JhtMm (5.69) 

The bottom column is handled in the same manner. The capacity is 

increased because of the additional concrete in the lower portion of the tapered 

column. The demand is also increased by the self weight of the concrete column 

and shear wall above the bottom column. Considering these effects, the limit 

state equation for failure due to crushing of the bottom column g(12) is 

0(12)   =   ni.^mcJ'c ~ 8.06-fmccf'cXrebar + 9A8-fmccXrebarfy - 26AlXasph 

-145.8Aconc - 17.19Astee; - 66.90Vtrk-iDFiIbeam 

SAlVtrk-iDFi-Jbean (5.70) 

5.6.2.3   Failure Due to Failure of the Column Footings 
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The column footings were modeled as isolated, two-way, concentri- 

cally loaded footings. Because all of the footings are identical, the most critical 

footings are those supporting interior columns which are carrying greater loads. 

The footings are analyzed with respect to failure by one-way shear, two-way 

or punching shear, and moment. The footings are assumed to be rigid and 

the underlying soil layers are elastic. The dimensions and placement of steel 

in the footings are shown in Fig. 5.24. The cumulative dead and live load to 

be transferred to the footing is assumed to be a concentrated load P which 

constitutes the demand on the footing. This will be the load transferred to 

the interior column from the pier cap plus the total weight of the column and 

proportional weight of the shear wall. 

The critical plane on a footing with respect to one-way shear extends 

across the width of the footing at a distance d from the face of the concen- 

trated load P. The distance d is the effective depth of the footing where 

d = 20 in (50.8 cm) as shown in Fig. 5.24. The failure mechanism is assumed 

to be beam action at a distance d from the support face as shown in Fig. 5.25. 

The one way shear demand Vdtmand is calculated as the load intensity (the 

concentrated load P divided by the area of the footing Aftg) multiplied by the 

footing width bw and the distance x as shown in Fig. 5.25 [Nawy 1990]. This 

assumes that the soil exerts a uniformly distributed load on the bottom of the 

footing for a concentrically loaded column [Bowles 1982]. 

P 
*demand ~~j       XOw Aftg 

=   [26.4l7asp/l + 159.77conc + 17.197,*«.« + QQ.90Vtrk-iDFiIbeam 
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Figure 5.24:    Dimensions and Location of Steel Reinforcement in 

the Column Footings 
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+8.41 Vtrk - iDFi-Jbeam] 
64/t2 (4/* 

2.92/i 

20in 

12in/ft  aeff *deff)(8ft) (5.71) 
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X 
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4' 

Figure 5.25:    One-Way Shear on Column Footing: Beam Action 

at a Distance d Away From the Support Face 

The shear capacity Vcapacüy is a function of the 28-day concrete com- 

pressive strength fc, the width of the footing bw, and the effective depth d 

[Nawy 1990]. 

* capacity — '"y./c  u> (5.72) 

The random variables are f'c and the uncertainty factors relating to effective 

depth Arf ,. and model uncertainty jmsc- By substitution, the shear capacity 

becomes 

Vr 
Jin) 

capacity 2y/l000lb/ft(fc) imlb/kip ^fHrnsc 

121.43^Ade//7msc (5.73) 
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The limit state equation for failure of the column footing with respect to one- 

way shear <?(13) is therefore, 

g(13)   =   121A3y/fi\deff7milc - (26AlXasph + 159.7Aconc 

+ 17.19Xsteel + Sft-QOVtrk-iDFilbeam + 8A\Vtrk-iDFi-eheam) 

(.3175-.2083Ade//) (5.74) 

The two-way shear failure mode is a failure in two directions where 

the column punches through the footing. The critical failure plane as shown in 

Fig. 5.26 is located at a distance d/2 from the support face where again d is the 

effective depth of the footing (i.e., d = 20 in (50.8 cm)). The shear demand 

is the load intensity P/Aftg multiplied by the perimeter area surrounding the 

failure plane as shown in Fig. 5.26. 

p 
Vdemand    —     ~A [Aftg — (&co/ + d) ] 

Aftg 

=   [26Aljasph + 159.77c07lc + 17.197stee, + 66.90Vtrk^DFiIbearn 

1 2 92ft 
+8AlVtrk - iDFi_Jbeam}———{4ft - —^- 

20m .   „ , , 

The two way shear capacity is determined from the smallest of the 

three following equations [Nawy 1990]: 

Vcapacity     =     (2 + ^y/Tpod (5.76) 
Pc 'c 

,CiA 
Vcapacüy   =   (^- + 2)Jf>b0d (5.77) 

"o 

Vcapacity     =     ±\[7%d (5-78) 



273 

failure plane 
AA 

4' 

4' 

8' 

Figure 5.26:    Two-Way Shear on Column Footing: Failure Plane 

of Column Punching Through Footing 
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where ßc is the ratio of the dimensions of the long side of the footing to the 

short side of the footing (ßc = 1.0 for the square footing), b0 is the perimeter 

of the critical failure plane, and as is a factor whose value is 40 for interior 

columns, 30 for edge columns, and 20 for corner columns. A deterministic 

analysis revealed that Eq. 5.78 provided the lowest value. From Eq. 5.78, the 

shear capacity for the reliability analysis will be 

* capacity ^y JcPo^ln 

=   4y/{l000lb/kips)ft 4[2.92/t(12m//t) + 20inXdeff]20inXdeff~fmsc 

=   278.1v
/^Ade//7msc + 202.4A^//7msc (5.79) 

The limit state equation for failure of the footing due to two-way shear #(14) 

is 

g(U)   =   278A^cXdefflmsc + 202AXlffjmsc-{26AlXasph + m.7Xconc 

+17.19Aatee« + mmVtrk-iDFJteam + 8.41 V^DF^/^J 

(.918 - .0761Ade// - .0434A^e//) (5.80) 

The critical plane when considering moment failure of the footing is 

at the face of the column as shown in Fig. 5.27 where the footing is treated 

like a cantilever beam with a distributed load. The moment arm is seen to be 

2.54 ft (0.774 m). The demand moment (in ft — kips) at the failure plane is 

determined as 

P       {moment arm 
'■"demand     —     ~\       "w ^ 

Aftg * 

,2 

r     (m(2^£ = .mP 
WWft) 
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10.657aSp/i + 64.47conc + 6.93^steei + 27.OVtrk-iDFiIbeam 

+3AVtrk^DF^eIbeam (5.81) 
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Figure 5.27:    Moment Failure on Column Footing: Critical Plane 

at the Support Face 

The moment capacity is again determined by the tensile force in the 

steel multiplied by the distance between the tension force and the compression 

force on the equivalent stress block (See Fig. 5.10). Using the same equation 

as was used for the pier cap (Eq. 5.62), the moment capacity of the concrete 

footing is 

^capacity     —     ■^■sjy[d       A ~ AsJy[d-        ,       ,  .„j 

ft 4.65in2\defffy——[20in\di 12m1 *eff 

4:.Q5in2\rebarfy 

2(.85)#(8/t)(12m//i) 
llmfc 
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A2     f2 

=   7.75Arehar/;/Arfe//7m/c - 0.132  re°r y ^mfc (5.82) 

The resulting limit state equation for failure of the footing due to moment 

#(15) is expressed as 

#(15)   =   7.75Arefear/^Ade//7m/e - .132  reoaTJv "" c _ io.65Aaapft _ 64.4AC0WC 
•/c 

-6.93Asteei — 27.0Vtrk-iDFiIi,eam — SAVtrk-iDFi-eIbeam (5.83) 

5.6.2.4   Failure of the Expansion Bearings 

The final failure mode to be considered is the analysis of Bridge 

E-17-AH is the expansion bearing whose dimensions are shown in Fig. 5.28. 

According to AASHTO [1994], cylindrical roller bearings are designed based 

on the contact stresses between two elastic bodies. The critical demand on the 

expansion bearing Pdemand comes from the load transferred from an interior 

girder. The capacity of the bearing is 

Pc.^ = 8-^%f (5.84) 

where: D: is the diameter of the bearing roller surface which is 23.5 in (59.7 

cm) from Fig. 5.28; D2 is the diameter of the mating surface which in this case 

is infinite since the surface is flat; w is the width of the bearing which is 11.5 

in (29.2 cm); fy is the yield strength of the steel; and Es is the modulus of 

elasticity of the steel. The only random variables are Fy and Es so 

8(11.5tn)(23.5»n) fy      01fion/,2 

Pcapacüy = ^^ 7^~ ^ = 2162.0^ (5.85) 
1 tin tin 
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The resulting limit state equation 0(16) is 

f2 

0(16) = 2162.0^- - 3.34Astee/ - b.26Xasph - 18.04AcoriC - 28.33Vtrk_iDFiIbeam 

(5.86) 

The reliability index of this component is only ß — 0.54 which equates to a 

probability of failure of Pf = 0.29. AASHTO [1994] defines the design equation 

as a serviceability limit state. All other limit states in the system model are 

strength-based limit states. 

The strength-based limit state that will be considered in this study 

will be failure due to crushing of the expansion joint. In this regard, the 

capacity of the bearing is the cross-sectional area As (From Fig. 5.28, As = 

25.25 in2 (162.9 cm2)) multiplied by the compressive yield stress of the steel Fy. 

The limit state equation for failure due to crushing of the expansion bearing 

0(16) is 

0(16) = 25.25Ftf - 3.34Astee/ - 5.26Aasp/l - 18.04Aconc - 28.33Vtrk-iDFiIbeam 

(5.87) 

Limit state equations have been derived for 16 possible failure modes. 

There are certainly others that could have been considered as well, such as 

failure of the soil in bearing, the abutment piles, the railings, or the diaphragms 

between girders but 16 failure modes is a reasonable start. This study also does 

not include the relationship of partial failure of one component to the failure of 

other components. For example, a common partial failure mode for expansion 

bearings is caused by the build-up of debris.   This makes bearing rotation 
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Figure 5.28: Detail of the Expansion Bearing 
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more difficult and may cause additional stresses on the girders which are not 

able to freely expand. Such considerations have not been explored. With all 

limit state equation and random variables defined, a reliability analysis on all 

components can now be completed. 

5.7   Component Reliability Results 

The reliabilities of the 16 possible failure modes as computed by 

RELSYS are listed in Table 5.12. The live load on the bridge was the 50 year 

Nowak [1994] live load. As expected, the component with the lowest reliability 

(ß = 2.44) was the failure of the interior girder due to flexure. Surprisingly, the 

next lowest component was failure of the interior column footing due to flexure 

(ß = 2.60). Given the low reliability of the column footing due to moment, 

the initial assumptions of a rigid footing on an elastic soil foundation could 

be reexamined. The rest of the substructure components had much higher 

reliabilities. The reliabilities of some failure modes such as moment failure 

of the pier cap, crushing of the expansion bearing, and one-way shear failure 

of the footing were so high that they can safely be excluded from the system 

analysis. 

5.7.1   Sensitivity With Respect To Random Variables 

Reliability results are only as good as the knowledge of the random 

variables that are in the limit state equations. Varying the mean value, stan- 

dard deviation, or type of distribution for any random variable will affect the 
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Table 5.12:    Reliability and Sensitivity Analysis of Failure Modes 

for Colorado Highway Bridge Number E-17-AH 

Reliab. Failure Most Sensitive 

No. Failure Mode Index Probability Variables 

1 Concrete deck, flexure 5.51 1.77* 10"8 
fy 

2 Interior girder, shear 6.22 2.41 *10~10 
fyi Imsg 

3 Interior girder, flexure 2.44 7.29 *10~3 
Fyi 1m fg 

4 Exterior girder, flexure 4.02 2.95 *10~5 
fy, 7mfg 

5 Exterior girder, shear 7.13 5.12* 10-13 
Imsg 

6 Ext.-int. girder, flexure 2.79 2.72 *10~3 
^yi 1m fg 

7 Ext.-int. girder, shear 6.43 6.23*10-n 
fyilmsg 

8 Pier cap, shear 3.83 6.42 * 10"5 
Jy 11msc 

9 Pier cap, pos. moment 8.82 0.0 fy 
10 Pier cap, neg. moment 8.75 0.0 fy 
11 Top column, crushing 5.80 3.27 *10-9 

Jci Imcci Jy 

12 Bottom column, crushing 5.72 5.27 *10"9 
1 ci Imcci Jy 

13 Footing, one-way shear 7.69 7.21 * 10~15 
Jci Imcc 

14 Footing, two-way shear 5.28 6.42 *10"8 
Jci Imcc 

15 Footing, flexure 2.60 4.60 *10~3 
Jci Jy 

16 Exp. bearing, crushing 7.84 2.33 *10~15 
Fy 
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results. Because obtaining accurate information on random variables can in- 

volve considerable research and expense, it is important to know which random 

variables are worth the investment. A sensitivity analysis identifies those ran- 

dom variables where slight changes in their values result in large changes in 

the reliability of the component. The sensitivity of the system reliability with 

respect to the random variables is not considered. 

As mentioned in Chapter 3, the program RELSYS provides sensitiv- 

ity values with respect to the mean and standard deviation of each random 

variable in a limit state equation. The sensitivity value for the mean is on which 

is the direction cosine of random variable i with respect to the reliability vector 

in standard normal space at the closest failure point. The sensitivity for the 

standard deviation is — ßo% where ß is the reliability index [Hohenbichler et al. 

1987]. These approximations of stochastic importance help determine which 

random variables are most important and most worthy of further investigation. 

To test the validity and understand the limitations of the sensitivity 

data provided by RELSYS, a detailed analysis was completed on failure mode 

g(3), failure of interior girder due to moment, where the live load was a de- 

terministic HS-20 truck. The sensitivity with respect to the random variables 

using the RELSYS approximations is shown in Fig. 5.29. Limit state equation 

p(3), failure of the interior girder with respect to moment contained random 

variables 6, 7, 9, 11, 13, 14, and 15 {Xasph, Xconc, Fy, \steel, DFh Ibeam, ^m}g) 

as listed in Tables 5.2 and 5.3. Fig. 5.29 shows that the mean value and stan- 

dard deviation of the yield strength of the steel (/x9 and <r9) and the model 
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uncertainty of flexure in girders (//15 and CT15) are the most sensitive variables. 

The unit weight of the steel (/xn and an) appears to be the most insensitive 

variable. 

To test these results, the mean and standard deviation for each ran- 

dom variable was separately varied by —20%, —10%, +10%, and +20% while 

holding all other random variables constant. The effect on the reliability index 

for variation of the mean values is shown in Fig. 5.30. Comparing Fig. 5.29 

to Fig. 5.30, the order of importance of the random variables is the same. 

Variables 9 and 15 are the most sensitive and variable 11 is the least sensitive. 

The best measures of sensitivity are the slopes of the lines in Fig. 5.30 which 

indicate that variables 9 and 15 are equally sensitive and that variable 6 is 

much less sensitive than variable 7. Looking at Fig. 5.29, one would conclude 

that variables 9 and 15 are equally sensitive and also that variables 6 and 7 

are equally sensitive. 

The same exact analysis of the standard deviations of the random 

variables is shown in Fig. 5.31. Comparing Fig. 5.31 and Fig. 5.29, the order 

of importance and the relative importance of the random variables seems to 

match well. Fig. 5.32 is the same graph as Fig. 5.31 but plotted on the same 

vertical scale as the mean values in Fig. 5.30. A comparison of Fig. 5.31 

and Fig. 5.30 reveals that reliability of the component is less sensitive with 

respect to the standard deviation than to the mean value of the same random 

variable. Fig. 5.29 is therefore misleading. It conveys that the reliability is 

more sensitive with respect to the standard deviation of variables 9 and 15 
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than with respect to the means of variables 9 and 15, which clearly is not true. 

From the exact analysis, one can conclude that the RELSYS sensitivity values 

are good approximations for the relative sensitivity of random variables but 

the means and standard deviations must be considered separately. 

In order to understand the strengths and limitations of the RELSYS 

sensitivity values, a sensitivity analysis was performed for all failure modes 

and using the 50 year Nowak live load which produced the results in Table 

5.12. The relative sensitivities with respect to the random variables associated 

with failure of the concrete deck g(l) and with failure of the interior girder 

due to shear g{2) are shown in Fig. 5.33 and those associated with g(3) and 

g(4) are shown in Fig. 5.34. 

The analysis was completed for limit state equations g(5) — p(16) as 

well. The most sensitive variables for each failure mode are listed in Table 5.12. 

In each case, the strength of the material {f'a fy, Fy) and the model uncertainty 

{imfci 7mco Imsg) were the most sensitive variables, both of which appear on 

the capacity side of the limit state equations. Given limited time and resources, 

the investigation of the uncertainty associated with these random variables 

would provide the greatest benefit toward obtaining accurate reliability results. 

5.8   Reliability of the Bridge as a System at a Fixed 
Point of Time 

In order to compute the reliability of a system, there needs to be 

a model which describes the behavior of the system and the relationship of 

the individual components to the overall system.   In order to use RELSYS, 
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Figure 5.34: Sensitivity Analysis on Random Variables: Failure 

Modes 3 (interior Girder due to Moment) and 4 
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a series-parallel model that eventually is comprised of the individual failure 

modes as described by limit state equations (5(1) — <?(16)) needs to be devel- 

oped. At the highest level, the bridge is a series system comprised of the deck, 

superstructure, and substructure. Fig. 5.35 considers the superstructure. It 

is composed of three spans in series, where the failure of any span constitutes 

failure of the bridge. Each span consists of nine girders where several model 

alternatives exist. Three possibilities for the girders are a series system, a 

parallel system where two adjacent girders must fail for the span to fail, or a 

parallel system where three adjacent girders must fail. Given the distribution 

of the live load and the interconnection between girders caused by the slab 

and the diaphragms, an argument could be made for any of the these three 

cases. Each girder can fail due to shear, moment, or crushing of the expansion 

bearing which finally reduces the model to the component limit state equations 

derived earlier. 

Fig. 5.36 provides the same breakdown for the substructure and the 

slab. The substructure consists of two abutments and two column piers. The 

column piers are a series system of a pier cap, columns, and column footings. 

The pier cap is a series system which can fail due to positive moment, negative 

moment or shear. The columns are actually a parallel system where the failure 

of four columns are required to fail the system. The interior columns were the 

most critical and the failure of an interior column would greatly affect the 

performance of the pier cap above it. It is conservative and reasonable, given 

the high reliability of the columns, to model only the interior column which 
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is a series system of the top and bottom interior column. Likewise, only the 

interior column footing is modeled. It is a series system of one-way shear, 

two-way shear and moment. 

The slab can be broken down as far as practicable. One equation 

could apply to the slab for the entire bridge, for an entire span, for a section of 

span between any two girders, or the slab could be divided into a grid pattern 

with each square of the grid having its own reliability. Several of these options 

are shown in Fig. 5.36. 

Fig. 5.37 is the resulting system model in terms of limit state equa- 

tions (g(l) — 5(16)) for Bridge E-17-AH assuming that the concrete deck is 

identical throughout a span, three adjacent girders must fail for the super- 

structure to fail, and the abutment reliability is not considered. Using the 

50-year Nowak live load and assuming no deterioration of the structure over 

time, the system reliability for the bridge was ßsys = 2.51. It is possible to 

simplify this model further by making some reasonable assumptions. 

If some of the failure modes with very high reliabilities are not con- 

sidered because they have negligible effect on the reliability of the system, the 

most relevant failure modes in the substructure are failure of the pier cap due 

to shear (g(8)) and failure of the footing due to moment (g(13)). Failure of 

the expansion bearing (#(16)) can be eliminated from the girder. If the two 

column piers are assumed to be perfectly correlated which is reasonable since 

they are subjected to almost identical loads and have identical strengths, the 

model only needs to consider one column pier. The same assumption can be 
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Bridge Model 
Deck        Superstructure    Substructure 

■ • • # 

Superstructure 

Span 1        Span 2        Span 3 
• • ■ • 

Spanl 

Ext. gird.   Ext.-int. gird    Int. gird.    Int. gird    Int. gird.    Int. gird.    Int. gird.    Ext.-int. gird    Ext. gird. 

Girder 1       Girder 2      Girder 3    Girder 4    Girder 5    Girder 6    Girder 7       Girder 8      Girder 9 

or 

Girder 1       Girder 2      Girder 3       Girder 4       Girder 5       Girder 6       Girder 7       Girder 8 

| Girder 2 Girder 3 Girder 4 - Girder 5 Girder 6 Girder 7 
,— 

Girder 8 Girder 9 

or 

Girder 1 Girder 2 Girder 3 Girder 4 Girder 5 Girder 6 Girder 7 

Girder 2 Girder 3 Girder 4 Girder 5 Girder 6 Girder 7 Girder 8 

Girder 3 Girder 4 Girder 5 Girder 6 Girder 7 Girder 8 Girder 9 

Exterior Girder 

Exp. bearing crushed Shear        Flexure 

g(16) g(5) g(4) 

Exterior-Interior Girder 

Exp. bearing crushed Shear        Flexure 
• • •  

g(16) g(7) g(6) 

Interior Girder 

Exp. bearing crushed Shear        Flexure 

g(16) g(2) g(3) 

Figure 5.35:    Series-Parallel     Model     for     Bridge     E-17-AH: 

Superstructure 
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Substructure 
Abutment 1       Column Pier 2      Column Pier 3      Abutment 4 

• • • •  

Column Pier 
Pier Cap Columns        Footings 

• • • • 

Pier Cap 
Shear Positive Flexure     Negative Flexure 

• • • • 
g(8) g(9) g(10) 

Columns 
Top Col. - Crushing     Bottom Col. - Crushing 

g(ll) g(12) 

Footings 
One-way Shear Two-way Shear Flexure 

g(13) g(14) g(15) 

Deck 
Deck - Flexure 

g(l) 

or 
Span 1 Deck Span 2 Deck Span 3 Deck 

• • • • 

g(D g(D g(D 

or segments between girders within a span 

Deck G1-G2 Deck G2-G3 Deck G3-G4 Deck G4-G5 Deck G5-G6 
• • • • • < 

g(D g(D g(D g(D g(D 

DeckG6-G7 Deck G7-G8 Deck G8-G9 

g(D g(D g(D 

Figure 5.36:    Series-Parallel  Model  for  Bridge  E-17-AH:   Sub- 

structure and Slab 
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Deck g(i) g(D g(D 

Span 1    Span 2     Span 3 

g(16)     g(5) g(4) 

g(16)     g(7) g(6) 

g(16)     g(2) g(3) 

g(16)     g(7)      g(6) g(16)     g(2)      g(3) g(16)     g(2)      g(3) 

g(16)     g(2) g(3) g(16) g(2) g(3) g(16)     g(2) g(3) 

g(16)     g(2) g(3) g(16) g(2) g(3) g(16)     g(2) 

Span 1 — Girders 

Superstructure 

g(16)     g(2) g(3) g(16) g<7) g(6) g(16)     g(5) 

g(16)     g(2) g(3) 

g(16)     g(2) g(3) 

g(16) g(2) g(3) 

g(16) g(2) g(3) 

g(16)     g(7) 

g(16) g(2) 

g(3) 

g(4) 

g(6) 

60) 

g(16)     g(5)      g(4) g(16)     g(7) g(6) g(16) g(2) g(3) g(16) g(2) 

g(16)     g(7)      g(6) g(16) g(2) g(3) g(16) g(2) g(3) g(16) g(2) 

g(3) 

g(3) 

g(16)     g(2)      g(3) g(16) g(2) g(3) g(16) g(2)      g(3) g(16) g(2) 

Span 2 -- Girders g(16) 6(2) 6(3) 6(16) g(7)     g(6) g(16) g(5) 

g(16) g(2) g(3) 

g(16) g(2) g(3) 

g(16) 6(2) 

g(16) g(2) 

g(3) 

8(3) 

6(16) g(7) 

6(16) g(2) 

g(3) 

g(4) 

6(6) 

6(3) 

g(16)     g(5) g(4) 

g(16)     g(7) g(6) 

g(16)     g(2) g(3) 

g(16) g(7) g(6) g(16) g(2) 6(3) g(16) g(2) 

g(16) g(2) g(3) g(16) g(2) g(3) g(16) g(2) 

g(3) 

g(3) 

g(16) 6(2) g(3) g(16)     g(2) 6(3) g(16) g(2) 

Span 3 - Girders 

Substructure 

6(16) 6(2) g(3) g(16)      g(7) g(6) g(16) g(5) 

6(16) 6(2) g(3) 

g(16)     g(2) g(3) 

g(16)      g(2) g(3) 

g(16)      g(2) g(3) 

6(16) 

g(3) 

g(4) 

g(7)      g(6) 

g(16) g(2)      g(3) 

g(13) g(14)             g(15) 8(11)              g(12)          g(8) g(9)              g(10) 

Column Footing Columns Pier Cap                 i 

g(13) g(14)            g(15) 

Column Pier 2 

8(11)               g(12)           g(8) g(9)            g(10) 

Column Footing Columns 

Column Pier 3 

Pier Cap 

Figure 5.37:    Series-Parallel Model for Bridge E-17-AH:  Deck, 

Superstructure, and Substructure 
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made with regard to perfect correlation between the three equal-length spans 

for the slab and girders. Further if the spans are assumed to be perfectly cor- 

related, and considering the symmetry within a span, the system model can 

be reduced to the model shown in Fig. 5.38 where three adjacent girders must 

still fail for the system to fail. The girders are numbered one through five as 

shown in Fig. 5.39. Using the simplified model and the 50 year Nowak live load 

model without deterioration, the system reliability was equal to ßsys = 2.54 

which is very close to the more complex model in Fig. 5.37. 

V-1       M-1 V-2     M-2 V-3     M-3 V-4     M-4 

M-Slab V-2      M-2 V-3     M-3 V-4     M-4 V-5      M-5 V-Pier     M-Ftg 

V-3       M-3 
 ♦  

V-4     M-4 V-5     M-5 
■ 

V-4     M-4 
 » ■ 

V-1: Failure Due to Shear in Girder 1 

M-3: Failure Due to Moment in Girder 3 

Figure 5.38: Simplified Series-Parallel Model for Bridge E-17- 

AH: Failure of Three Adjacent Girders Required 

for System Failure 

The system model and the correlation between random variables will 

affect the system reliability of a structure. In the previous calculation, it was 

assumed that the girder resistances were uncorrelated (PRUR- = 0.0).   Using 

the same simplified model, the system reliability was ß. sys 2.49 when the 
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■5'- • 6.667'- -6.667^ 
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E IE I            I            I            I 

1 2 3           4           5 

E = Exterior Girder 
I-E = Interior-Exterior Girder 
I = Interior Girder 

IE 

Figure 5.39: Layout of Girders in Bridge E-17-AH 

resistance correlation was PR^RJ = 0.5 and ßsys = 2.31 when PR^R. = 1.0. 

Similarly, the simplified model was revised as shown in Fig. 5.40 where only 

two adjacent girders have to fail for the system to fail and Fig. 5.41 where 

only a single girder must fail. The system reliability results for these revised 

models are shown in Table 5.13. 

For the model in Fig. 5.41 which is entirely a series system, the 

increased correlation between the resistances improves the system reliability. 

For the parallel system models in Figs. 5.40 and 5.38, the increased correlation 

between the resistances decreases the system reliability. When there is perfect 

correlation between the resistances, the three models produce very similar 

results as expected. The correlation between other random variables could also 

be investigated along with other variations in the system model. Such analyses 

emphasize the importance of accurate input for reliability calculations. The 
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results obtained are only as good as the random variables, the correlation, and 

the system model that produces them. 

Table 5.13: System Reliability Results for Bridge E-17-AH Us- 

ing Different System Models and Different Correla- 

tion Between Girder Resistances 

Failure Defined By 

Correlation Between Girder Resistances 

PR^RJ = 0.0 pRi,Rj  = 0-5 pRi,Rj = L0 

Single Girder 

Two Adjacent Girders 

Three Adjacent Girders 

1.97 

2.50 

2.54 

2.06 

2.41 

2.49 

2.23 

2.26 

2.31 

5.9   Time Dependent Deterioration of the Bridge 

Any structure will deteriorate over time which will affect the relia- 

bility of the system. A great deal of research has been undertaken to model 

the deterioration of structures and much more is clearly needed. Enright et 

al. [1996] have compiled a survey of deterioration models for concrete structures 

alone. For many cases of deterioration, we cannot not yet fully quantify how 

a structure loses capacity using a mathematical relationship. In such cases, 

deterioration models are developed by observing large numbers of structures 

over time and using regression analysis to fit the data into a linear or expo- 

nential relationship. Hearn et al. [1995] provides a comprehensive listing of 

these types of deterioration models as they relate to specific condition states 
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M-Slab 

V-l   M-l     V-2    M-2     V-3   M-3     V-4    M-4 
 • • i • 1 i • • i 1 n 

V-2  M-2 V-3    M-3 
i • • i • • t • i i »■ 

(i—11 

V-4   M-4 V-5    M-5 

V-Pier   M-Rg 
i>-» •- 

Figure 5.40: Simplified Series-Parallel Model for Bridge E-17- 

AH: Failure of Two Adjacent Girders Required for 

System Failure 

M-Slab   V-l    M-l   V-2    M-2    V-3    M-3 
I 1 1 • • • 1 1 

V-4    M4   V-5   M-5    V-Pier    M-Rg 

Figure 5.41: Simplified Series-Parallel Model for Bridge E-17- 

AH: Failure of A Single Girder Required for System 

Failure 
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developed by various researchers and state transportation departments. 

This study will use available deterioration models to describe how 

the capacity of various elements of Bridge E-17-AH change over time. The 

system model to be used will be the simplified model in Fig. 5.38 where three 

adjacent girders must fail for the system to fail. The correlation between 

resistances is assumed to be p^,^ = 0.5. The live load is increasing over 

time in accordance with the Nowak live load model [Nowak 1993] and extreme 

value statistics. The capacity is evaluated at two year inspection intervals 

based on deterioration. This approach yields conservative results. For each 

evaluation, it is assumed that the maximum load is occurring at the time that 

the resistance is a minimum. In reality, the maximum live load could occur 

any time between the time of evaluation and when the bridge was placed in 

service. To account for this effect would require a much more complex analysis. 

The bridge deterioration is assumed to be a result of corrosion of 

the steel girders and deterioration of the slab and pier cap due to chloride 

penetration of the concrete and subsequent corrosion of the steel reinforcement. 

The corrosion model for the girders was first proposed in Albrecht and Naeemi 

[1984] and has been used in many other studies [Sommer et ah 1993, Hendawi 

1994, Jiang 1995]. The chloride penetration model was introduced in Cady and 

Weyers [1984], West and Hime [1985], and Takewaka and Mastumoto [1988]. 

The model was further developed and refined to include values for random 

variables by Thoft-Christensen et ah [1997]. 

5.9.1   Deterioration of the Concrete Slab and Pier Cap 
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Under normal circumstances, the reinforcing steel in concrete would 

not corrode. When concrete is placed around steel reinforcing, a protective 

passivation layer of gamma iron oxide is formed because of a chemical reaction 

between oxygen and the highly alkaline environment of the concrete. This high 

pH environment, if left alone, will keep this protective film stable [Takewaka 

and Mastumoto 1988]. Corrosion can result however if this environment is 

made more acidic which will cause the protective layer to decompose and then 

be exposed to oxygen and moisture. 

The most common means of increasing the acidity of the environment 

is the process of carbonation or the penetration of chloride ions through the 

concrete. Carbonation occurs as carbon dioxide diffuses into the concrete and 

reacts with the calcium hydroxide of the cement [Enright et al. 1996]. The 

more common cause of increased acidity is through chloride ion penetration, 

most commonly the result of continued use of road salts to prevent freezing 

on the roadway during the winter months. The increased acidity breaks down 

the passivation layer and corrosion is initiated as the reinforcement is exposed 

to oxygen and moisture which have penetrated the microscopic cracks present 

in all concrete [Lin 1995]. Since practical experience [Thoft-Christensen et al. 

1997] has shown chloride penetration to be a larger problem than carbonation, 

this study will focus on chloride penetration. 

The chloride concentration at the reinforcement level must reach a 

minimum concentration before the corrosion process will start. This creates 

a two-step process.   The first step is the penetration of chlorides from the 
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concrete surface over time until a sufficient chloride concentration Ccr has 

built up at the reinforcing steel. The rate of chloride penetration into concrete 

as a function of time t and space x has been shown to follow Fick's second law 

of diffusion [Takewaka and Mastumoto 1988]: 

dCxt      Dco Cxt 
dt dx2 (5.88) 

where CXit=chloride concentration at distance x from the surface at time t and 

Dc is the chloride diffusion coefficient. Assuming that the concentration of the 

chlorides at the surface is constant, the solution to Eq. 5.88 is 

Cx,t = C0[l - erf(^=)} (5.89) 

where C0 is the equilibrium chloride concentration on the concrete surface as a 

percent weight of the cement and erf is the error function. The error function 

erf is a special case of the incomplete gamma function and is defined by [Tuma 

1987] 

2    }    r2 , 2   .1 x      1 x3      1 x5      1 x7 ,       .       . 
erm=Je-*dx=       (----- + ----- + ...)      (5.90) 

v       0 v 

Press et al. [1986] provides the FORTRAN computer code needed to compute 

erf(x). 

In a time dependent study, the variable of interest is the corrosion 

initiation time T/ which is the amount of time between the application of the 

surface chloride and the onset of corrosion (which occurs when the critical 

chloride concentration Ccr is reached) at some distance x from the surface. 

The corrosion initiation time Tj can be expressed as [Thoft-Christensen et al. 
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1997] 

Ti = (d/-g//2)2
(er/_1(^a)r2 (591) 

where di = the concrete cover and Di is the initial diameter of the reinforce- 

ment bar. Ci is the initial chloride concentration at the distance x which for 

this study will be assumed to be zero. 

In reality, the initiation time Tj was found using Eq. 5.89 rather than 

trying to directly solve for an inverse error function. For a specific distance 

from the surface x, the time t was iteratively varied until the chloride con- 

centration at the point in question CXtt was equal to the threshold or critical 

chloride concentration Ccr that will initiate corrosion. The time t when this 

occurs is the corrosion initiation time Tj. 

The second step in the process is the actual corrosion of the steel rein- 

forcement. Once corrosion has started, then the diameter of the reinforcement 

bars as a function of time Dj{t) is modeled by 

£>/(<) = Dj- Ccorricorr(t - Tx) = DI- 0.0203w(t - 7» (5.92) 

where Dj = the initial diameter of the reinforcing bar (in inches), Ccorr is a 

corrosion coefficient which for this study is estimated to be Ccorr = 0.0203, and 

icorr is a parameter related to the rate of corrosion. Since the area of available 

steel reinforcement A(t) at any time t is the quantity needed to determine 

capacity in the limit state equations, that quantity is expressed as: 
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Mt) = 

nD\\ for    t < Ti 

n{D{t)f\   for   T, < t < T, + A/(0.0203w) (5.93) 

0 for    t > 7} + A/(0.0203wr) 

where Tj + Dj/(0.0203wr) becomes an upper limit time beyond which the 

reinforcing bar is assumed to provide no strength to the structure. 

This corrosion process is highly uncertain and a reliability analysis 

requires the introduction of many new random variables. One option is to 

include all of these random variables into the existing limit state equations. 

This would be very difficult since the corrosion of the steel is a function of 

the corrosion initiation time Tj which is itself computed from the inverse error 

function which is also a function of random variables. The limit state equation 

can be solved and the uncertainty in the corrosion process can be included if an 

approximate distribution for the area of steel A(t) at any time can be found. 

The Point Estimate Method described in USACE [1992] is used to obtain the 

mean and standard deviation of A(t). 

The random variables used for this time-based reliability analysis and 

their associated values and distributions are taken from Thoft-Christensen et 

al. [1997] and are shown in Table 5.14. Note that the actual rate of corrosion 

rcorr can be computed using Eq. 5.92 and the value for the corrosion parameter 

icorr, as follows: 

rcorr   =   0.0203W = 0.0203(0.098) = 0.001989 in/yr 

=   1.989 mils/yr (0.051 mm/yr) (5.94) 
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This analysis is performed for both the concrete slab and the pier cap. It is 

assumed that the chloride concentration on the pier cap surface is two-thirds 

the concentration of the chlorides on the surface of the slab. Road salts are 

applied directly to the slab surface. 

Table 5.14: Random Variables (RV) Used To Compute the De- 

terioration of Reinforcing Steel in the Slab and Pier 

Cap Due To Chloride Penetration of the Concrete 

RV Units Description Values* 

C0 % Chloride concentration on the surface N[1.08, 0.072] slab 

N[0.72, 0.048] pier 

Dc in21'sec Diffusion coefficient N[5.42, 0.387](10"7) 

X in Distance to reinforcement {dj — Dj/2) N[2.25, 0.337] slab 

N[2.0, 0.3] pier 

ocr % Critical chloride concentration N[.40, 0.05] 

Dj in Initial diameter of bar N[0.625, 0.0187] slab 

N[0.5, 0.015] pier 

icorr in/yr Corrosion parameter N[0.098, 0.0114] 

* Unless specific :ally stated, values are for both slab and pier 

It is assumed that chlorides will leak through the pavement joints to 

reach the pier cap but will be diluted in the process. Similarly, it is assumed 

that the concentration of the chlorides is the same on the sides of the pier cap as 

it is on the top. The assumed deterioration in the pier cap is that the chlorides 
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penetrate from the side of the cap and corrode the outside stirrups as shown 

in Figs. 5.18 and 5.19. It will take the chlorides much longer to penetrate 

to the interior stirrup sections which will remain intact much longer. The 

corrosion model for the steel reinforcement is based on general corrosion and 

its statistical values. The model does not consider localized pitting corrosion 

which can result in a much higher weakening of the structure in specific areas 

[Thoft-Christensen et al. 1997]. 

The Point Estimate Method [USACE 1992] is used to first estimate 

the mean and standard deviation of the corrosion initiation time T/ and then 

compute the same parameters for the area of steel A(t) at any time t. The 

Point Estimate Method approximates the probability integral by repeated de- 

terministic analyses. It considers all possible combinations of the mean plus 

one standard deviation and the mean minus one standard deviation for all 

random variables. The results which conclude that the mean corrosion ini- 

tiation time for the slab is Tt = 19.60 years with a standard deviation of 

7.51 years are shown in Table 5.15. For each case, the iterative solution of 

Eq. 5.91 was obtained using the mean ± standard deviation values listed in 

Table 5.14. The same method was applied to the corrosion initiation time in 

the pier cap where the surface concentration of chlorides was less. On the pier 

cap, the mean corrosion initiation time was Tj = 39.28 years with a standard 

deviation of 21.21 years. 

Once the parameters are obtained for the corrosion initiation time 

T/, the area of steel A(t) can be computed for any time t using the same 
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Table 5.15: Point Estimate Method Results for Finding the 

Mean and Standard Deviation for the Corrosion Ini- 

tiation Time T/ for the Concrete Slab 

Iteration C0 Dc X ucr Tj 

Number % in2 /sec* 10~7 in % years 

1 1.15 5.81 2.59 0.45 24.76 

2 1.15 5.81 2.59 0.35 17.26 

3 1.15 5.81 1.91 0.45 13.53 

4 1.15 5.81 1.91 0.35 9.43 

5 1.15 5.03 2.59 0.45 28.57 

6 1.15 5.03 2.59 0.35 19.91 

7 1.15 5.03 1.91 0.45 15.61 

8 1.15 5.03 1.91 0.35 10.88 

9 1.01 5.81 2.59 0.45 31.48 

10 1.01 5.81 2.59 0.35 20.65 

11 1.01 5.81 1.91 0.45 17.20 

12 1.01 5.81 1.91 0.35 11.28 

13 1.01 5.03 2.59 0.45 36.32 

14 1.01 5.03 2.59 0.35 23.83 

15 1.01 5.03 1.91 0.45 19.84 

16 1.01 5.03 1.91 0.35 13.02 

-* / mean    ~ :   19.6( ) years 

-* / std devia tion 7.51 years 
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technique. The results for the area of steel in the top of the slab after thirty 

years A(30) for a one-foot (0.305 m) section of slab (i.e., two #4 bars, see 

Fig. 5.9) using Eq. 5.93 are shown in Table 5.16. 

Table 5.16: Point Estimate Method Results for Finding the 

Mean and Standard Deviation for the Area of Steel 

After 30 Years A(30) for the Concrete Slab 

Iteration A Tj lCorr ,4(30) 

Number in years in/year ■    0 

1 0.606 12.09 0.087 1.037 

2 0.606 12.09 0.109 1.008 

3 0.606 27.11 0.087 1.135 

4 0.606 27.11 0.109 1.130 

5 0.644 12.09 0.087 1.177 

6 0.644 12.09 0.109 1.145 

7 0.644 27.11 0.087 1.281 

8 0.644 27.11 0.109 1.276 

-A-{o())mean =  1.1 49 in2 

A(30)std d aviation =  .0919 in2 

The same procedure was used to compute the area of steel A(t) in the 

top of a one foot (0.305 m) section of the slab for any time t. Fig. 5.42 shows the 

mean and standard deviation for A(t) over a 70 year time period. The graph 
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can clearly be divided into three sections: the initial flat section where there 

is a high certainty that corrosion has not begun, a second portion where there 

is uncertainty about whether or not corrosion has been initiated, and a third 

steeper section where it is very likely that corrosion has begun. As time passes, 

the mean value of the area of steel is decreasing as the bar deteriorates while 

the standard deviation remains about the same. The coefficient of variation is 

therefore increasing over time. 

Fig. 5.43 shows the coefficient of variation of A(t) over time. The 

coefficient of variation (5) rises most rapidly during the period where it is most 

uncertain whether or not corrosion has started. The cov continues to rise but 

at a lower rate once it is more certain that corrosion has started. Fig. 5.43 

also demonstrates that the Point Estimate Method provides an approximation 

of A(t) over time. The exact solution would not provide a flat curve in the 

initial section but would rather show a slight slope reflecting the tail of the 

distribution for the corrosion initiation time T/. Similarly, the solution in 

the later life of the structure would reflect the other tail of the distribution 

and the possibility that corrosion has not been initiated. In this example, 

the Point Estimate Method provides a less conservative solution in the early 

life of the structure and a more conservative solution in the later life of the 

structure. The results however appear reasonable and an exact solution would 

have been much more difficult to obtain. The exact same method was used to 

calculate the deteriorating area of shear steel in the pier cap over time. The 

time dependent area of steel mean and standard deviation are used in the limit 
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state equations for the failure of the slab g(l) and the failure of the pier cap 

due to shear g(8) to compute the reliability of these failure modes over time. 

5.9.2   Deterioration of the Girders 

While the chlorides are penetrating the concrete deck and cause the 

steel reinforcement to corrode, the exposed steel girders are also subject to 

corrosion. Corrosion deterioration is common among steel structures, partic- 

ularly those which accumulate water. Corrosion is an electrochemical process 

involving oxidation and reduction. The corroding metal is the anode; the ex- 

isting rust is the cathode; and the water film provides the electrolyte through 

which the current flows [Scully 1990]. Over time, the corrosion will pit and 

destroy the steel surface causing a reduction in the cross-section area. The 

reduction of the web area will lower the shear capacity of the structure and 

the plastic section modulus reduction will lower the moment capacity. This 

study focuses on the material loss which accompanies corrosion. Other effects 

of corrosion such as the pressure exerted on other elements which may cause 

stresses and eccentricities or the locking of bearings are not included. 

Corrosion is difficult to predict and can take many forms such as 

pitting, crevice, galvanic, or stress corrosion. Pitting corrosion is localized and 

difficult to predict. It often begins with a defect on the surface and may cause 

local stress concentrations. Crevice corrosion often occurs at joints and tight 

spaces where different members are very close together. Similarly galvanic 

corrosion is a problem at joints where uncommon materials are connected 

electrically such as welds.   The presence of a tensile force tends to increase 
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the rate of corrosion which is known as stress corrosion [Sommer et al. 1993]. 

This study, however, includes only general corrosion which is assumed to be 

uniformly distributed on the surface and is the most common type of corrosion. 

Even general corrosion is difficult to predict since it is dependent on 

the type of steel, the local environment, the presence of moisture, and even the 

location of the steel member on the structure. The presence of chlorides from 

road salts increases corrosion. Steel girders on the same bridge will deteriorate 

differently as more road spray and salts tend to get deposited on the exterior 

girders. Even within a girder, the corrosion pattern can differ as more water 

and debris will accumulate near the joints rather than the middle. 

Albrecht and Naeemi [1984] made a comprehensive study to attempt 

to predict corrosion in different environments for both carbon and weathering 

steel based on field studies in 46 locations worldwide. Using regression anal- 

ysis of the field results, they developed a corrosion propagation model which 

predicts the average corrosion penetration C(t) in micrometers (10~6m) at any 

time t where t is in years. The corrosion penetration C[t) is 

C{t) = AtB (5.95) 

where A and B are the regression parameters based on the environment and 

type of steel. The environments were classified as urban/industrial, rural, 

or marine. Bridge E-17-AH is located in the metro Denver area and is best 

classified as an urban environment (environment 1) which contains the sulfur 

oxides and nitrogen oxides from fossil fuels and automobile exhaust which 
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enhance corrosion. It is readily apparent from an inspection of this bridge 

that the exterior and interior-exterior girders are corroding much faster than 

the interior girders. Perhaps the interior girders are better shielded from the 

urban contaminants (environment 2). 

For this study, it will be assumed that the exterior and interior- 

exterior girders are exposed to the urban environment (environment 1), while 

the exposure to the interior girders is more clearly represented by the rural 

environment (environment 2). The bridge girders are carbon steel. The pa- 

rameters that will be used to predict corrosion deterioration of the girders are 

shown in Table 5.17. The parameters A and B are random variables that 

must be included in the reliability analysis. This study does not consider the 

protective benefit provided by the paint on the girders. 

The assumed corrosion pattern for the girders is shown in Fig. 5.44 

where the corrosion extends all the way up the web at the supports and only a 

quarter of the way up the web at the center. Similar assumptions were made 

in Sommer et al. [1993] and Hendawi [1994]. 

To compute the reliability of the girders over time, the Point Estimate 

Method will again be used to compute the mean and standard deviation of the 

plastic section modulus Z and the area of the shear web dwtw. The reduced 

plastic section modulus will reduce the moment capacities in the girders as 

described in limit state equations g(3), <?(4), and g(6). Similarly, the reduced 

web area will reduce the shear capacity in limit state equations g(2), #(5), and 

9(7). 
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Table 5.17: Statistical Parameters A and B for Predicting the 

Corrosion Propagation in the Bridge E-17-AH Gird- 

ers [Albrecht and Naeemi 1984] 

Parameter A B 

Interior Girders (Environment 2) 

Mean value, /i 

Coefficient of Variation, a/fi 

Correlation coefficient, PA,B 

34.0 

0.09 

0.0* 

0.65 

0.10 

Exterior and Interior-Exterior Girders (Environment 1) 

Mean value, \x 

Coefficient of Variation, a/fji 

Correlation coefficient, PA,B 

80.2 

0.42 

0.68 

0.593 

0.40 

* Correlation data not available, variables assumed to be uncorrelated 
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Center At Support 

Figure 5.44: Corrosion Pattern on Steel Girders on Bridge E-17-AH 
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The plastic section modulus Z must be computed over time. The 

initial section properties of the steel girders are known and are considered to 

be deterministic. They are the depth of the beam d, the thickness tw and depth 

dw of the web, and the thickness tf and width bf of the flange. The depth 

of corrosion dcorr, a lognormally distributed random variable, is computed for 

any period of time. Other dimensions are defined as shown in Fig. 5.45. 

p   =   0.75(d-2tf) 

C<      —       U f £j\JbcorT 

T     —     Lf       O'corr 

9     —     "w       t'Q'corr 

s    =    p/3 + dcorr (5.96) 

The first step is to determine the location of the plastic neutral axis 

(N.A) as shown in Fig. 5.45 which indicates the point where the areas above 

and below the plastic neutral axis are equal. The distance eg from the bottom 

of the beam to the neutral axis is computed as 

Area   =   bf(tf) + tw(p) + s(g) + r(c) 

cg   =   d_tf_ (Area/2-t,(M (|. gJ) 

Li* vw 

The plastic section modulus Z is the first moment of area about the 

plastic neutral axis for the sections shown in dotted lines in Fig. 5.45. 

Z   =   {cg-r/2)r(c) + {cg-r-s/2)s{g) + (d-tf-cg)tw(d-tf-cg)/2 

+ {d-tf/2-cg)+ 2_ 
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+(p -{d-tf- cg))tw
P    {d    *f    C9) (5.98) 

The Point Estimate Method is used to compute the mean and stan- 

dard deviation of Z at any time t. The only random variables in the analysis 

are the corrosion parameters A and B which are correlated for the exterior 

and interior-exterior girders. The Point Estimate Method accounts for corre- 

lation between random variables by using weighted probability concentrations. 

There are four possible probability combinations PAB using the corrosion pa- 

rameters A and B:  P++, P+_, P_+, and P where + indicates mean plus 

standard deviation for the individual variable and — indicates mean minus 

standard deviation. The weight assigned to each possibility is [USACE 1992] 

(PA+)(PB+)   =   (PA-)(PB-) = (0.5)(0.5) + (0.25)PAB 

(PA+)(PB-)   =   (PA-)(PB+) = (0.5)(0.5)-(0.25)PAB (5.99) 

Table 5.18 shows the results for the plastic section modulus Z(30) for 

the interior-exterior girder subject to corrosion for a time period of 30 years. 

Recall that the interior-exterior girder is a WF 33x132 standard shape beam 

whose initial dimensions are shown in Fig. 5.5. The corrosion parameters are: 

HA = 80.2, OA = 33.68, \XB — -593, OB = -237, and PA,B — 0.68 as shown in 

Table 5.17. For 30 years, the mean value for the plastic section modulus for 

the interior-exterior girder is Z(30) = 458.21 in3 (7508.7 cm3) with a standard 

deviation of 19.98 in3 (327A cm3). 

The mean and standard deviation for Z over a 70 year life for the 

interior-exterior girder is shown in Fig. 5.46. The uncertainty associated with 
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Table 5.18: Point Estimate Method Results for Finding the 

Mean and Standard Deviation for the Plastic Sec- 

tion Modulus After 30 Years, Z(30), for the Interior- 

Exterior Girder 

Iteration A B Z (in3) PAB 

1 46.5 0.356 467.93 0.42 

2 46.5 0.830 460.55 0.08 

3 113.9 0.356 465.29 0.08 

4 113.9 0.830 446.69 0.42 

Z(30)mean .42(446.69 + 467.93) + . 08(465.29 + 460.55) = 458.21 in3 

Z{30)std deviation    =    19.98 in 
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the plastic section modulus expands linearly as time passes and more corrosion 

occurs. The deterioration of the interior girder over time is much less as shown 

in Fig. 5.47 which makes sense since the corrosion parameters were smaller and 

had lower coefficients of variation (see Table 5.17). 

The area of the web Aw over time is much easier to calculate. 

Aw = dw[tw — Zdcorr) (o.IUUJ 

where dw is the depth of the web, tw is the thickness of the web, and dcorr is the 

depth of corrosion at the time being considered. The Point Estimate Method is 

used to determine the mean and standard deviation of Aw. The deterioration 

of the shear web over a 70 year time period for an interior-exterior girder is 

shown in Fig. 5.48. 

The uncertainty as shown by the coefficients of variation over time 

for all three types of girders for both the deterioration of the web area Aw and 

plastic section modulus Z are shown in Fig. 5.49. In all cases the coefficient 

of variation rises over time as the random corrosion process progresses. The 

interior girder uncertainty is much less than that associated with the exterior 

and interior-exterior girders. The uncertainty associated with Aw is much 

greater than that of Z which makes sense since the shear area is deteriorating 

at a much greater rate than the loss of plastic section modulus given the model 

described in Fig. 5.44. 

Clearly more research is needed in the area of corrosion deterioration. 

While the Albrecht and Naeemi [1984] study included 46 samples in diverse 
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locations, the results provide only a rough idea of corrosion propagation. Once 

the samples were classified by material and environment type, the number of 

test samples in any single category was very small. The corrosion parameters A 

and B that were used for the interior girders for example (i.e., carbon steel in a 

rural environment (environment 1)) were based on only two samples located in 

Saylorsburg, Pennsylvania and Olpe, Federal Republic of Germany. Hopefully 

further study will provide a larger number of cases from which to obtain data. 

5.10   System Reliability Over Time 

Having defined limit state equations for the components of the bridge 

in terms of the random variables and determined their respective reliabilities, 

Bridge E-17-AH was modeled as a simplified series parallel system as shown in 

Fig. 5.38. The model included the nine dominant failure modes and required 

the failure of three adjacent girders for the system to fail. The increase in live 

load (Section 5.5.2) and the deterioration of the structure over time (Section 

5.9) have been modeled. It is now possible to examine the reliability of the 

system over time. 

Using the assumptions listed in Section 5.8, the model in Fig. 5.38, 

and a correlation between the resistances of the girders of PRUR — 0.5, the 

program RELSYS computed the system and component reliabilities for Bridge 

E-17-AH assuming a 70 year expected life. Inspections were conducted and the 

reliability was computed every two years. Figs. 5.50, 5.51, and 5.52 show the 

time-dependent component and system reliability results. Fig. 5.50 shows the 

system reliability along with the reliability of the three types of girders with 
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respect to moment. The interior girder has the lowest initial component relia- 

bility, but has the slowest deterioration rate. In fact, there is a crossover point 

around 60 years where the reliability of the interior-exterior girder becomes 

less than that of the interior girder. After an initial drop, caused mostly by 

the increased number of live load occurrences, the system reliability remains 

relatively flat for 30 years. The system reliability drops almost linearly from 

there. If a minimum system reliability of ßmin = 2.0 was imposed, some type 

of remedial action would be needed after 50 years. 

Fig. 5.51 shows the system reliability and the reliability of the girders 

with respect to shear. The shear component reliabilities are initially very 

high but the rapid deterioration of the web area causes the reliabilities of 

the exterior and interior-exterior girders to drop quickly. After 40 years, the 

reliability of these girders with respect to shear is below the reliability of 

the system. This occurs because of the parallel nature of the system model. 

Because three girders must fail for the system to fail, the interior girder which 

is not deteriorating as quickly is maintaining the reliability of the system. 

Fig. 5.52 shows the system reliability and the component reliabili- 

ties of the slab, pier cap, and column footing. These components are all in 

the series portion of the system model and will therefore always reflect reli- 

abilities that are higher than the reliability of the system. The reliability of 

the column footing dictates the reliability of the system in the early life of 

the bridge. While the interior girder moment component reliability was lower 

than the column footing component reliability, the interior girders are part of 
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the parallel portion of the system model. The column footing was assumed to 

have negligible deterioration relative to the rest of the bridge. Its reliability 

remains almost constant throughout the life of the structure and only drops 

due to increased live load. The drop in system reliability later in the life of 

the structure is due to the deterioration of the concrete slab. The pier cap 

is not deteriorating as quickly because the surface concentration of chlorides 

was not as high and only the exterior portions of the reinforcing stirrups are 

corroding. 

Figs. 5.50, 5.51, and 5.52 demonstrate that the reliability of a sys- 

tem depends on the series-parallel model of the system and its deterioration. 

The component with the lowest reliability may not be the most important 

component and does not necessarily control the reliability of the system. The 

most important component early in the life of the structure may not be the 

most important during the later periods. It is difficult to predict the reliabil- 

ity of the system even if the reliability of all of the components are known, 

and therefore a repair strategy based solely on component reliabilities would 

probably be inefficient. 

5.11   Repair Criteria and Repair Options 

Since system reliability can be computed over the lifetime of a struc- 

ture, a decision must be made regarding the time when remedial action must 

be taken. This decision should be based on the reliability of the system rather 

than the reliability of any of the individual components. The repair criteria 

should include a minimum system reliability below which the structure must 
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not be allowed to fall. There could be a dual criteria where one value lists when 

a structure should be repaired subject to availability of funds and a second 

value where a structure absolutely must be repaired to ensure public safety. 

The repair criteria are statements of acceptable risk. Such an analy- 

sis includes assessing the importance of the structure, the cost of failure, and 

the costs of performing the repairs. The analysis must also incorporate the as- 

sumptions and model used to compute the reliability. Many studies have been 

completed which assess the reliability of current design codes. Lin [1995], for 

example, concluded that a reinforced concrete T-beam designed by AASHTO 

specifications would have a reliability between ß = 3.0 and ß = 3.5. The study 

used a deterministic HS-20 truck as the live load. As indicated in Fig. 5.50, 

the initial system reliability of this bridge is only ßsys = 2.7 but there were a 

number of assumptions which produced that value to include the use of the 

Nowak live load model as described in Section 5.5.2. 

Establishing a minimum allowable system reliability ßmin = 3.0 would 

clearly be unrealistic for Bridge E-17-AH since it would need to be repaired 

or replaced on the day it was built. This study does not undertake the failure 

cost analysis that would be needed to establish a minimum allowable system 

reliability ßmin- Rather the arbitrary criterion that ßmin — 2.0 is established. 

An alternative criterion could be used and its effect on the repair strategy 

can easily be seen from the figures that will follow. For this study, whenever 

the system reliability of the bridge ßsys falls below ßmin = 2.0, a repair or 

replacement action must take place. 
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With the repair criterion established, the repair options and their as- 

sociated costs must be developed. A technique was introduced and illustrated 

in Chapter 4 which established a ßthreshoid value for components which was 

varied until an optimum solution was found. All components whose individual 

reliabilities were below ßthreshoid were repaired and those whose reliabilities 

were above ßthreshoid were not repaired at the point where ßsys fell below the 

minimum allowable value. While this technique worked well for the trusses in 

Chapter 4, it did not work well for this particular bridge. 

The failure modes and the failure actions were not easily separated. 

For example, when the pier cap was repaired for shear, it was also repaired for 

positive and negative moment. Also, if one decided to replace all of the girders 

to improve their shear and moment strength, the slab would be replaced as well 

due to the natural sequence of construction. For Bridge E-17-AH, the better 

approach was to define distinct repair options and try all possible combinations 

of those options to determine an optimum strategy. 

The development of realistic repair options involved some real-life 

constraints. For example, Bridge E-17-AH has a sufficiency rating of 60.8 out 

of a possible 100. It has been declared to be functionally obsolete because 

the roadway width is only 40 feet (12.2 m). For a repair project to qualify 

for federal funding, the sufficiency rating would have to be raised to at least 

80 and the repair should last at least 10 years [White 1996]. Painting the 

steel girders to delay corrosion would ordinarily be a reasonable maintenance 

option.   Given the environmental restrictions involving the lead-based paint 
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currently on the girders, that option is prohibitively expensive. 

Merely replacing portions of the existing bridge in their current form 

would not meet the National Bridge Replacement and Rehabilitation Pro- 

gram funding requirements [FHWA 1988b], which could realistically determine 

whether or not a project will be approved. A significant redesign and widening 

of the bridge would be required. Similarly, the load rating on this bridge is 

only HS 17.8 due to serviceability of the girders as illustrated in Section 5.3.4. 

Modern bridges should have a minimum load rating of HS 20 and most are 

being designed for HS 25. A replacement of the superstructure would prob- 

ably include a redesign to incorporate larger girders, continuous girders, or 

some type of composite action between the girders and slab to boost the load 

rating. The considerations of obtaining federal money, correcting vulnerabil- 

ity and safety deficiencies, and the need for redesign all affect the real world 

selection of repair options. 

Since this study specifically chose not to undertake the broader and 

more complex issues of design and to deliberately neglect those repairs not 

associated with deterioration, the problem was simplified to exclude those 

considerations. For the purpose of this study, it was assumed that Bridge 

E-17-AH was adequate in all respects and that a replacement bridge would 

be of the same type. Given the existing bridge and deterioration models, five 

realistic repair options and their present day costs were developed in consult 

with the Colorado DOT. Using expert opinion [Wilson 1996, White 1996], 

historical cost data for actual bridge repairs [CDOT 1994, CDOT 1995a], and 
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the actual original cost of the bridge ($393,000 in 1942), the repair options and 

costs are shown in Table 5.19, along with the limit state equations affected 

by the repair. The sources conflicted on some cost estimates so a reasonable 

compromise was reached in each case. 

Table 5.19:    Repair  Options  and  Associated  Repair  Costs  for 

Bridge E-17-AH (Using 1996 U.S. Dollars) 

# Repair Option Repair Cost ($) Limit State Eqns. 

0 Do nothing 0 none 

1 Replace deck 225,600 9(1) 

2 Replace exterior girders 229,200 0(4,5,6,7) 

3 Replace exterior girders and deck 341,800 0(1,4,5,6,7) 

4 Replace superstructure 487,100 0(1,2,3,4,5,6,7) 

5 Replace bridge 659,900 all 

Option 1 is to replace the entire deck which would include the con- 

crete slab, sidewalk, guardrails and fresh layer of asphalt. The replacement 

of a portion of the slab was not considered because the slab sections were 

assumed to be perfectly correlated in the simplified series-parallel model of 

the bridge. Option 2 is to replace the exterior and interior-exterior girders 

which are deteriorating faster than the interior girders. The options include 

replacement of four girders, sidewalk, guard rails, and only that portion of the 
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slab above the replaced girders. Option 3 is the same as option 2 except the 

entire deck is replaced. Option 4 is to replace the entire superstructure which 

includes all nine girders and the entire deck as described in option 1. Finally, 

option 5 is to replace the entire bridge using the current design. 

5.12   Optimum Lifetime Repair Strategy 

An optimum repair strategy can be developed by using all feasible 

combinations of the repair options listed in Table 5.19. The various options 

are tried until replacement of the bridge is the only remaining option. For 

any expected life of the structure, an optimum repair strategy is determined. 

The repair criterion ßmin = 2.0 is first applied to Bridge E-17-AH using the 

simplified series-parallel model shown in Fig. 5.38 and the live load and deteri- 

oration models used in Section 5.10. Figs. 5.50, 5.51, and 5.52 reflect option 0 

which is to do nothing. Under this option, the bridge will last 50 years before 

some action is required. 

Fig. 5.53 shows the effect of continuously repairing the slab (option 

1). Fig. 5.53 is a combination of Figs. 5.50, 5.51, and 5.52 except that the 

bridge system is being repaired whenever ßsys falls below ßmin = 2.0. The 

only component being repaired is the slab which gets replaced at year 50 and 

year 94. The slab is repaired again at year 106 but the repair does not cause 

the system reliability to rise above 2.0 at which point some repair other than 

replacing the deck must be made. 

The same analysis is completed for replacing the entire superstruc- 
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ture (option 4) as shown in Fig. 5.54. In this example, seven of the nine 

components are being repaired whenever the system reliability index falls be- 

low 2.0. In fact, everything except the pier cap and column footings are being 

repaired. Surprisingly, this has little effect on the system reliability relative to 

repairing the slab. The superstructure is replaced at year 50 and year 94. The 

only difference is that the system reliability does not fall below 2.0 until year 

108 instead of year 106. It appears that replacing the superstructure would 

be a waste of money and resources, relative to replacing the deck. 

The optimum repair strategy for any expected life of the structure 

can be found from Fig. 5.55 where all feasible options and their associated 

costs are considered. The costs are computed using the present day (1996) 

costs listed in Table 5.19 discounted over time using an discount interest rate 

of 2%. The present value cost CW, for example, of replacing the deck at year 

50 is computed as 

(l + r)n      (1 + 0.02)50 ' v ; 

where Crep is the cost of the repair option as shown in Table 5.19, r is the 

discount rate, and n is the number of years in the future that the repair will 

be made. 

The discount rate used is the difference between the return obtain- 

able from a risk-free investment such as short term government securities and 

the rate of inflation. Historically, this rate has been around 2-3% [Weston and 

Brigham 1981]. Other organizations use higher discount rates in their cost ben- 

efit analysis to reflect the lowest rate of return that knowledgeable investors 
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will accept in the investment market. These rates include AASHTO (4-5%), 

U.S. Department of Agriculture (4%), Wisconsin and Pennsylvania Depart- 

ments of Transportation (6%), and the Office of Management and Budget 

(10%) [FHWA 1989]. 

Fig. 5.55 shows that options 1, 3, and 4 yield the same benefit in 

extended life for different costs, where option 1 is the most economical. There- 

fore, for subsequent repairs, options 3 and 4 for the initial repair were elim- 

inated from consideration. Option 2 was not considered because it did not 

improve the system reliability of the bridge above ßmin = 2.0. The process 

was continued until there was no choice but to replace the bridge. The opti- 

mum lifetime repair strategy based on Fig. 5.55 is summarized in Table 5.20. 

It is unrealistic to believe that one would choose a more expensive repair strat- 

egy just to obtain two extra years of useful life (i.e., 106-108 years), but the 

analysis does reflect option 3 as the optimum second repair for that very small 

increase in the expected life span. 

A change in the random variables, the structure model, or the de- 

terioration model can change these results significantly. The expected life of 

the bridge given the repair options and the models used was at most 108 years 

before the bridge had to be replaced. This was dictated by the diminishing 

reliability of the pier cap whose steel was corroding due to chloride penetration 

of the concrete. If just one critical variable, such as the rate of corrosion, icorr, 

from Eq. 5.92 is varied, the results would be much different. Fig. 5.56 shows 

the results for replacing the deck (option 1) when the corrosion rate parameter 
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Table 5.20: Optimum Lifetime Repair Strategy for Bridge E-17- 

AH Using Simplified Series-Parallel Model Requir- 

ing Failure of Three Adjacent Girders 

Expected Life (years) Optimum Repair Strategy Cost ($) 

0-50 Do nothing 0 

50-94 1@50 83,813 

94-106 1@50, 1@94 118,881 

106-108 1@50, 3@94 136,945 

>108 1@50, 5@94 186,393 

1@50 indicates option 1 (replace deck) at year 50 
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icorr is halved from icorr = 0.098 as shown in Table 5.14 to icorr = 0.049 for 

the pier cap. The life of the bridge is extended from 104 years (Fig. 5.53) to 

180 years where additional slab repairs sufficiently improve the bridge system 

reliability since the pier cap is not deteriorating as fast. The slab is repaired 

at year 52, year 100, and year 146. At year 180, the deck replacement is no 

longer sufficient due to the diminished reliability of the pier cap. 

The results of all possible options are shown in Fig. 5.57. Again the 

parallel nature of the series-parallel model that requires three adjacent girders 

to fail renders the replacement of the girders or superstructure an ineffective 

option. The optimum lifetime repair strategy based on Fig. 5.57 is summarized 

in Table 5.21. Clearly, varying other variables would have produced a different 

strategy while there are some variables that could be modified with no change 

in the results. 

If the series-parallel model of the system is revised to consider that 

the failure of only two adjacent girders constitutes failure of the system as 

shown in Fig. 5.40, the repair strategy will change. The effect of repairing 

the exterior girders will be more important to the system reliability. In the 

previous model (Fig. 5.38), the bridge would not fail until an interior girder 

failed. Using the two adjacent girder model and the original pier cap corrosion 

rate, Fig. 5.58 shows the results for option 1 if only the deck is replaced. The 

slab is replaced at year 50 and a second slab repair at year 70 is not sufficient 

to meet minimum system reliability requirements. Fig. 5.59 shows the effect 

of replacing the slab at year 50 (option 1) and replacing the slab and exterior 
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Table 5.21: Optimum Lifetime Repair Strategy for Bridge E-17- 

AH Using Simplified Series-Parallel Model Requir- 

ing Failure of Three Adjacent Girders and the Cor- 

rosion Rate of the Pier Cap is Halved 

Expected Life (years) Optimum Repair Strategy Cost ($) 

0-52 Do nothing 0 

52-100 1@52 80,562 

100-146 1@52, 1@100 111,695 

146-180 1@52, 1@100, 1@146 124,216 

180-186 1@52, 1@100, 1@146 4@180 138,001 

>186 1@52, 1@100, 1@146 5@180 142,891 

1@52 indicates option 1 (replace deck) at year 52 
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girders at year 70 (option 3). The repair effect lasts until year 102 when the 

pier cap deterioration becomes dominant. 

The number of competitive repair options is greater using this model 

as shown in Fig. 5.60. The optimum repair strategy for any expected life for 

the two adjacent girder series-parallel model from Fig. 5.40 is summarized in 

Table 5.22. 

Table 5.22: Optimum Lifetime Repair Strategy for Bridge E-17- 

AH Using Simplified Series-Parallel Model Requir- 

ing Failure of Two Adjacent Girders 

Expected Life (years) Optimum Repair Strategy Cost ($) 

0-50 Do nothing 0 

50-70 1@50 83,813 

70-92 3@50 126,979 

92-100 3@50, 1@92 163,458 

100-104 1@50, 3@70 169,269 

104-106 1@50, 4@70 205,588 

>106 3@50, 5@92 233,685 

1@50 indicates option 1 (replace deck) at year 50 

When competitive repair options are present, the prevailing discount 

rate could affect the outcome. The results in Fig. 5.60 and Table 5.22 are based 

on a discount rate of 2%. Higher discount rates tend to make repairs made late 
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in the life of the structure more attractive. The available repair options are 

the same regardless of interest rates. Table 5.23 compares the costs associated 

with all repair options from Fig. 5.60 for discounts rates ranging from one to 

six percent. 

While the costs associated with each repair option are very different 

for the three interest rates, their relative attractiveness changes as well. For 

a discount rate of one percent, the optimum repair strategies are identical to 

those shown in Table 5.22 for two percent. For the discount rate of three 

percent, the optimum strategies are almost identical as those shown in Table 

5.22. The only difference is for the expected structural life between 104-106 

years, the strategy 3@50, 4@92 ($110,065) is more attractive than the 1@50, 

4@70 ($112,980) strategy shown in Table 5.22. The jump to 4% offers no new 

strategy changes. 

Once the discount rate jumps to 5% and beyond, it is more advanta- 

geous to replace the deck at year 50 and postpone the more expensive repairs 

as long as possible. At 6%, it is actually less expensive to replace the slab at 

year 50 (option 1) and then replace the exterior girders and slab at year 70 

(option 3) than to just execute option 3 at year 50. The optimum strategy for 

a discount rate of 6% is shown in Table 5.24 which can be compared to the 

2% strategy in Table 5.22. All possible strategies and associated costs using 

the 6% rate are shown in Fig. 5.61 which can be compared to Fig. 5.60 which 

reflects the 2% discount rate. 

Finally, the repair of the girders becomes even more important, if 
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Table 5.23: Cost of Available Repair Strategy for Bridge E-17- 

AH Using Simplified Series-Parallel Model Requir- 

ing Failure of Two Adjacent Girders for Discount 

Rates of 1% Through 6% 

Repair 

Strategy 

Cost of Strategy ($) 

r = l% r = 2% r = 3% r = 4% r = 5% r = 6% 

Do nothing 

1@50 

3@50 

4@50 

5@50 

1@50, 3@70 

1@50, 4@70 

1@50, 5@70 

3@50, 1@92 

3@50, 3@92 

3@50, 4@92 

3@50, 5@92 

1@50, 3@70, 5@104 

3@50, 1@92, 5@100 

0 

137,165 

207,814 

296,157 

401,219 

307,484 

379,887 

465,993 

298,122 

344,637 

402,800 

471,972 

541,946 

542,087 

0 

83,813 

126,979 

180,958 

245,153 

169,269 

205,588 

248,788 

163,458 

182,248 

205,743 

233,685 

253,420 

254,546 

0 

51,459 

77,965 

111,108 

150,523 

94,628 

112,980 

134,804 

92,832 

100,490 

110,065 

121,452 

125,115 

123,319 

0 

31,745 

48,096 

68,541 

92,856 

53,695 

63,026 

74,123 

52,209 

57,358 

61,295 

65,978 

64,864 

65,275 

0 

19,673 

29,806 

42,477 

57,546 

30,907 

35,682 

41,361 

32,341 

33,646 

35,279 

37,220 

35,035 

37,359 

0 

12,247 

18,556 

26,444 

35,825 

18,033 

20,492 

23,417 

19,616 

20,162 

20,844 

21,656 

19,573 

21,561 

1@50 indicates option 1 (replace deck) at year 50 
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Table 5.24: Optimum Lifetime Repair Strategy for Bridge E-17- 

AH Using Simplified Series-Parallel Model Requir- 

ing Failure of Two Adjacent Girders With the Dis- 

count Rate Raised to 6% 

Expected Life (years) Optimum Repair Strategy Cost ($) 

0-50 Do nothing 0 

50-70 1@50 12,247 

70-104 1@50, 3@70 18,033 

>104 1@50, 3@70, 5@104 19,573 

1@50 indicates option 1 (replace deck) at year 50 
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the bridge is modeled as a series system where the failure of any girder would 

cause failure of the bridge as shown in Fig. 5.41. For the series system model, 

Fig. 5.62 shows the system and component reliability for repair option 3 where 

both the exterior girders and the slab are replaced. The repairs are made at 

year 32, year 60, and year 74. At year 76, another repair is made but is not 

sufficient to meet the minimum system reliability constraint. Using this model, 

the repairs are made sooner in the life of the structure and the effect of the 

repair on the system reliability is less. The effect of the repair at year 74 is 

almost undetectable from the graph. Using the series model, replacement of 

the exterior girders provides more benefit than replacing the deck which was 

certainly not the case in the two adjacent girder and three adjacent girder 

models. 

The possible repair option combinations and their costs for the two 

percent discount rate are shown in Fig. 5.63. The replacement costs are greater 

that the previous cases because the actions are taken earlier in the life of the 

structure. Table 5.25 provides the optimum repair strategy for any expected 

life of structure. The optimum bridge replacement time is earlier (i.e., 80 years 

as opposed to 106 years for the two and three adjacent girder models) for the 

series model. As these various examples indicate, the reliability analysis results 

and optimum repair strategy are dependent on the input in the form of the 

random variables, limit state equations, series-parallel model, and live load 

and deterioration models. 

5.13   Serviceability Flags 
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Table 5.25: Optimum Lifetime Repair Strategy for Bridge E-17- 

AH Using Simplified Series Model Requiring Failure 

of a Single Girder 

Expected Life (years) Optimum Repair Strategy Cost ($) 

0-32 Do nothing 0 

32-44 2@32 121,613 

44-60 3@32 181,359 

60-68 3@32, 2@60, 251,219 

68-74 3@32, 3@60 285,540 

74-80 3@32, 4@60 329,827 

>80 3@32, 5@60 382,497 

1@50 indicates option 1 (replace deck) at year 50 



c 
o 

•i-H 
<4-> 

a, 
O 
>> 
60 
<D +-» 
C3 
Ö 
CO 

357 

f-^-|  $119,711 

$121,613 
Optimum strategy 

$181,359 

$258,455 

—I   $350,143 

$216,004 

 1   $264,622 

 1   $397,715 

-|   $251,259 

3 
$285,540 

 1   $329,827 

5 
$382,497 

f^l    $364,496 

A   $429,731 

30 40 50 60 70 80 90 100 

Time (years) 

Figure 5.63: All Feasible Repair Options For Bridge E-17-AH 

Using Simplified Series Model Requiring the Failure 

of a Single Girder 



358 

The bridge reliability analysis has focused entirely on strength-based 

equations. It has not included serviceability concerns such as pot holes in 

the concrete deck, excessive deflections, or spalling on the concrete columns 

which may necessitate a bridge repair but which will not cause the bridge 

to collapse. It is extremely difficult to incorporate these items into a system 

reliability analysis because the level of concern over serviceability issues is not 

as high since the cost of failure involves driver discomfort, aesthetics, or public 

concern, rather than collapse of the bridge. The minimum system reliability 

index for this bridge is ßmin = 2.0 which equates to a notional probability of 

failure of 0.022 or one chance in fifty. With potholes in a deck, we may be 

willing to accept a ten percent chance of them occurring or even a fifty percent 

chance before making the repair. Such disparity is reflected in current design 

procedures where load and resistance factors are applied to strength-based 

concerns but not to the serviceability equations. It is difficult to incorporate 

a serviceability limit state equation into a series-parallel system model when 

the level of concern regarding that serviceability component is different. 

For example, consider a series system for a girder consisting of com- 

ponents relating to failure by shear, moment, and excessive deflection. If the 

minimum system reliability was established as ßmin = 2.0, then the bridge 

would be overly constrained on its deflections. Conversely, if the system re- 

liability was based on allowing the deflection mode to reach ßmin = 1.0, the 

shear and moment failure modes could become unacceptably low. Using cur- 

rent serviceability criteria, the strength and serviceability modes can not be 



359 

incorporated together in a series-parallel model. 

A separate system reliability model exclusively for serviceability does 

not make sense either. In this study, relevant serviceability issues will be 

included as serviceability flags. A serviceability flag can be inserted by the user 

to accommodate an additional concern on a structure that is not addressed in 

the strength-based limit state equations. For example, if the user believes that 

a deck will have to be replaced every 30 years due to excessive potholes which 

do not significantly affect the slab strength but which present unacceptable 

driving conditions, then a serviceability flag is created. The serviceability 

flag may override the strength-based solution. In this case, the slab would 

be repaired every 30 years or whenever the strength-based solution dictates, 

whichever is sooner. 

It is up to the engineer to decide which serviceability flags to insert. 

For Bridge E-17-AH, three potential concerns are addressed. The deck may 

need to be replaced due to potholes and spalls prior to strength becoming 

critical. Only the pier cap deterioration is modeled in the analysis of the 

substructure. The remainder of the substructure is deteriorating but there 

was no reasonable model available to describe the deterioration. Finally, the 

steel railing is deteriorating but was not included in the analysis. Therefore, 

serviceability flags will be used for the concrete deck, the railings, and the 

substructure, as a whole. In this example, it is concluded that the strength- 

based analysis of the girders is sufficient and no serviceability flag will be 

added. 
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The information source for the serviceability flags will be historical 

data. A large number of studies have been conducted in many different States 

to obtain this historical data and use it to provide prediction models. Hearn 

et al. [1995] provides a summary of many of these studies and their accompa- 

nying results. Most of these studies and models describe how existing bridges 

have progressed through prescribed condition states which provide a general 

description of the bridge's deterioration. The reasons or the mechanisms that 

caused the deterioration are not addressed in these models. The models merely 

reflect how a large number of bridges have behaved over time. These models 

are used for serviceability flags because they are the best way to incorporate 

all of the non strength-based intangibles that have not or cannot be quantified. 

The danger in using these models is that the unique structure being 

considered and its environment (i.e., Bridge E-17-AH) may be very differ- 

ent from the majority of the structures from which the data was taken. For 

example, the substructure of Bridge E-17-AH is different from most bridge 

substructures because a railroad runs underneath the bridge. Many bridges 

are over water where the substructure is subject to scour and many bridges are 

over highways where trucks and cars driving underneath expose the substruc- 

ture to splashed water and pollutants. The substructure of Bridge E-17-AH 

could reasonably be expected to last longer than the data provided for the 

average bridge would indicate. 

5.13.1   Condition States 
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Most recent deterioration studies are based on the National Bridge 

Inventory (NBI) Condition Ratings. As part of the National Bridge Inspec- 

tion Program, States are required to inspect their bridges every two years 

and report the results to the Federal Highway Administration (FHWA) in a 

standardized format of condition ratings. The ratings as listed in Table 5.26 

range from a high score of 9 indicating a bridge in excellent condition to a low 

of 0 indicating a bridge that has already failed [FHWA 1988a]. The FHWA 

requires separate ratings for the deck, superstructure, and substructure. This 

rating information, along with other required data on the nation's bridges, 

comprise the National Bridge Inventory data base from which many of these 

studies find their data. Some studies attempt to include all bridges into a 

single model while others break the data down by location, type of bridge, 

traffic volume, and environment. 

As Bridge Management Systems have progressed, many States have 

developed programs to include much more information than the minimum 

required by the Federal Government. Attempts to study how different bridge 

components behave over time have been made for railings, joints, bearings, 

and all types of decks, girders, and substructures. In many cases, the States 

have developed their own condition states with more precise descriptions for 

every bridge element that gets inspected. These individual condition states 

are then converted to the NBI scale for federal reporting requirements. 

In Colorado, for example, which uses the PONTIS Bridge Manage- 

ment System, an asphalt concrete deck is rated according to one of five condi- 
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Table 5.26:    National Bridge Inventory Condition Ratings, Their 

Meaning, and Associated Repair Actions 

NBI Rating Description Repair Action 

9 Excellent condition None 

8 Very good condition None 

7 Good condition Minor maintenance 

6 Satisfactory condition Major maintenance 

5 Fair condition Minor repair 

4 Poor condition Major repair 

3 Serious condition Rehabilitate 

2 Critical condition Replace 

1 Imminent failure condition Close bridge and evaluate 

0 Failed condition Beyond corrective action 
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tion states list in Table 5.27 [PONTIS, 1995]. Such reporting has allowed the 

data for specific bridge elements to be collected, studied and modeled. 

Table 5.27: PONTIS [1995] Condition State (CS) Ratings for An 

Unprotected Concrete Deck with Asphalt Concrete 

Overlay 

CS Description 

The surfacing of the deck has no repaired areas and there are no potholes 

in this surfacing 

Repaired areas and/or potholes or impending potholes exist. Their combined 

area is less than 2% of the deck area. 

Repaired areas and/or potholes or impending potholes exist. Their combined 

area is less than 10% of the deck area. 

Repaired areas and/or potholes or impending potholes exist. Their combined 

area is more than 10% but less than 25% of the deck area. 

Repaired areas and/or potholes or impending potholes exist. Their combined 

area is less than 25% of the deck area. 

5.13.2   Condition State Deterioration Models 

Some available models will be considered to develop serviceability 

flags for the deck, railings and substructure for Bridge E-17-AH. Many of 

the models are based on a linear deterioration of condition states where the 

deterioration rate can be expressed in terms of condition rating loss per year 

(CR/year) where the condition rating at any time t can be computed. Looking 
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specifically at reinforced concrete (RC) decks, railings and RC substructures, 

the results of several studies based on linear models as described in Hearn et 

al. [1995] are shown in Table 5.28. The source of the study and whether it 

was based on data or the opinion of experts is included. Given the condition 

state deterioration rate, the number of years required to reach NBI condition 

state 4 (poor condition) and condition state 3 (serious condition) are given. 

Some of the studies became more specific regarding traffic volume and 

location. The Chen and Johnston [1987] study found the time to condition 

state 4 for the RC decks where the average daily traffic (ADT) was greater 

than 4000 was 39 years, rather than the 41 years for all RC decks. The ADT 

for Bridge E-17-AH is 8500. Similarly the James et al. [1993] study found 

that the condition state deterioration rate for RC decks on State highways in 

the western region of the U.S. was 0.176 rather than 0.210 for all RC decks, 

which equates to 28 years to condition state 4 and and 34 years to condition 

state 3. 

Similar detail could be added to the substructure estimates as well. 

The Chen and Johnston study [1987] actually listed three condition state 

deterioration rates (0.102, 0.119, and 0.114) for the coastal , mountain and 

piedmont regions of North Carolina, respectively. A Pennsylvania study de- 

termined the expected service life of a deck with uncoated reinforcement to 

be 25 years and a substructure to be 100 years [Hearn et al. 1996]. Jiang and 

Sinha [1989] developed the following polynomial model for a concrete bridge 
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Table 5.28: Linear Condition State Deterioration Models for RC 

Decks, Railings, and RC Substructures [Hearn et al. 

1995] 

Time to Time to Deter. 

Element Source Basis NBI=4 NBI=3 Rate 

years years CR/year 

RC Deck James et al. 1993 Data 24 29 0.210 

RC Deck Stukhart et al. 1991 Expert 33 39 0.152 

RC Deck Chen & Johnston 1987 Data 41 49 0.123 

RC Deck Morrow & Johnston 1994 Data 45 54 0.111 

RC Deck Al Rahim & Johnston 1991 Data 48 58 0.104 

Steel Rail Morrow & Johnston 1994 Data 37 44 0.135 

RC Sub. James et al. 1993 Data 23 27 0.219 

RC Sub. Stukhart et al. 1991 Expert 35 42 0.143 

RC Sub. Chen k Johnston 1987 Data 44 53 0.114 

RC Sub. Morrow & Johnston 1994 Data 42 50 0.119 

RC Sub. Al Rahim & Johnston 1991 Data 42 50 0.119 
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superstructure 

CS(t) = 9.0 - 0.28877329t + 0.0093685t2 - 0.00008877£3 (5.102) 

where CS(t) is the condition rating of the bridge at time t where t is the 

age of the bridge in years, which translates to 71 years to condition state 

4. Weyers et ah [1988] computed an average condition state deterioration 

rate for replacing a substructure is 0.077 CR/year which indicates 65 years 

to condition state 4 and 78 years to condition state 3. There is no exact 

agreement between these studies and the result is an average deterioration 

rate. To create a serviceability flag which incorporates a probability (i.e., 

10%, 20%, 30% chance) of being at a particular condition state, one could use 

Markov chains. 

5.13.3   Markov Chain Models 

Markov chains can be used to model NBI condition ratings based 

on the data from large numbers of bridges using transitional probabilities. 

Jiang and Sinha [1989] used Markov chains to model the condition of bridge 

substructures in Indiana. Table 5.29 shows the transitional probabilities for 

concrete bridge substructures. In this case the transitional probabilities change 

as the bridge ages. 

The value p9 indicates the probability that a bridge that is currently 

in condition state 9 will remain in condition state 9 for the next year. For 

a new bridge that is only 0 to 6 years old, this probability is pg = 0.705. 

Assuming that a bridge can only change one condition state in a given year, 
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Table 5.29: Transition Probabilities for Concrete Bridge Sub- 

structures Using Markov Chains [Jiang and Sinha 

1989] 

Bridge Age (years) P9 Ps Pi P6 Pb Pi 

0-6 0.705 0.818 0.810 0.802 0.801 0.800 

7-12 0.980 0.709 0.711 0.980 0.980 0.856 

13-18 0.638 0.639 0.748 0.980 .0980 0.980 

19-24 0.798 0.791 0.788 0.980 0.870 0.824 

25-30 0.794 0.810 0.773 0.980 0.980 0.980 

31-36 0.815 0.794 0.787 0.980 0.980 0.737 

37-42 0.800 0.798 0.815 0.980 0.850 0.980 

43-48 0.800 0.800 0.309 0.938 0.980 0.050 

49-54 0.800 0.800 0.800 0.711 0.707 0.768 

55-60 0.800 0.800 0.800 0.05 0.05 0.505 
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the probability that the bridge will fall to condition state 8 is 1 — pg which 

for the new bridge is 1 — 0.705 = 0.295. Once this new bridge (0 — 6 years) 

has transitioned to condition state 8, the probability that it will remain in 

condition state 8 is p8 = 0.818, and so forth. Using Table 5.29 the bridge has 

only been modeled to condition state 3. 

It is possible to conduct a simulation to determine the probability of 

the concrete substructure being in any condition state at any given time. For 

each year, a random number between 0.0 and 1.0 is generated and compared 

to the transition probability to determine whether the bridge will change con- 

dition states or remain in the same condition state. The results of a simulation 

for 10,000 bridges conducted for a 70 year time period using the transitional 

probabilities in Table 5.29 are shown in Tables 5.30 and 5.31 and Fig. 5.64. 

Table 5.30 shows that there is a 10% chance of the concrete substructure being 

in condition state 3 (i.e., 1000 bridges) between 34-35 years. Similarly, Table 

5.31 indicates that there is a 13% chance (i.e., about 1300 bridges) between 

41-42 years and a 50% chance (i.e., about 5000 bridges) between 53-54 years 

of being in condition state 3. These could be used to define probabilistic ser- 

viceability flags. The curves in Fig. 5.64 are very uneven due to the degree 

which the transition probabilities change over time. 

The distribution curves are much smoother when the transition prob- 

abilities do not change over time and the process is stationary. Cesare et al. 

[1992] used Markov chains to model many bridge elements in New York State 

using a data base of 850 bridges and 2,000 individual spans.  The New York 
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Table 5.30:    Simulation Results for 10,000 Concrete Bridge Sub- 

structures Using Markov Chains (Year 0-35) 

Bridge Age 
(years) 

Number of Bridges in Each Condition State (CS) 
cs9 CS8 CS7 CS6 cs5 CS4 csr^ 

0 10000 0 0 0 0 0 0 
1 7016 2984 0 0 0 0 0 
2 4951 4549 500 0 0 0 0 
3 3529 5150 1225 96 0 0 0 
4 2512 5215 1943 306 24 0 0 
5 1764 5006 2531 624 73 2 0 
6 1260 4567 2987 970 199 16 1 
7 1238 3280 3449 1800 214 16 3 
8 1214 2334 3432 2750 248 14 8 
9 1185 1699 3086 3714 289 15 12 
10 1169 1202 2723 4511 367 14 14 
11 1134 886 2307 5211 427 18 17 
12 1107 625 1935 5767 526 21 19 
13 700 811 1677 6139 627 27 19 
14 432 784 1555 6423 747 40 19 
15 274 666 1454 6679 850 55 22 
16 177 537 1284 6932 977 69 24 
17 109 401 1152 7142 1083 86 27 
18 72 287 997 7296 1212 108 28 
19 62 251 831 7348 1214 264 30 
20 51 205 703 7392 1197 417 35 
21 41 160 610 7395 1193 560 41 
22 30 146 514 7368 1167 724 51 
23 23 125 445 7340 1149 852 66 
24 17 104 391 7284 1135 989 80 
25 13 90 327 7197 1282 988 103 
26 9 76 268 7109 1423 999 116 
27 8 60 213 7027 1552 1012 128 
28 7 51 159 6950 1665 1017 151 
29 5 42 134 6837 1768 1039 175 
30 5 34 113 6714 1884 1053 197 
31 4 29 101 6600 1977 805 484 
32 3 21 88 6498 2046 622 722 
33 3 17 72 6389 2138 495 886 
34 3 14 61 6282 2209 438 993 
35 2 10 58 6174 2290 368 1098 
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Table 5.31:    Simulation Results for 10,000 Concrete Bridge Sub- 

structures Using Markov Chains (Year 36-70) 

Bridge Age 
(years) 

Number of Bridges in Each Condition State (CS) 
cs9 CS8 cs7 CS6 cs5 G'6'4 CS, 

36 2 7 46 6063 2382 314 1186 
37 1 7 40 5963 2148 649 1192 
38 1 5 37 5864 1914 969 1210 
39 1 5 28 5755 1729 1252 1230 
40 1 3 24 5651 1604 1451 1266 
41 1 3 20 5548 1472 1662 1294 
42 1 3 16 5447 1369 1835 1329 
43 1 3 5 5095 1698 133 3065 
44 1 3 1 4784 1986 30 3195 
45 1 3 1 4472 2260 38 3225 
46 1 3 0 4205 2485 44 3262 
47 1 3 0 3946 2699 50 3301 
48 0 4 0 3719 2865 63 3349 
49 0 3 1 2631 3119 885 3361 
50 0 2 2 1832 3015 1566 3583 
51 0 1 3 1289 2648 2122 3937 
52 0 1 2 925 2233 2406 4433 
53 0 1 1 681 1831 2518 4968 
54 0 0 2 504 1478 2462 5554 
55 0 0 2 33 552 2685 6728 
56 0 0 2 1 62 1823 8112 
57 0 0 2 0 3 985 9010 
58 0 0 2 0 0 489 9509 
59 0 0 1 1 0 267 9731 
60 0 0 0 1 1 129 9869 
61 0 0 0 0 1 70 9929 
62 0 0 0 0 0 30 9970 
63 0 0 0 0 0 15 9985 
64 0 0 0 0 0 13 9987 
65 0 0 0 0 0 3 9997 
66 0 0 0 0 0 2 9998 
67 0 0 0 0 0 1 9999 
68 0 0 0 0 0 1 9999 
69 0 0 0 0 0 0 10000 
70 0 0 0 0 0 0 10000 
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condition ratings range from 7 (high) to 1 (low) as shown in Table 5.32 

Table 5.32:    New York State Condition Ratings and Their Defi- 

nitions [Cesare et al. 1992] 

New York Rating Description 

7 New condition 

6 Between new condition and minor deterioration 

5 Minor deterioration 

4 Between minor and serious deterioration 

3 Serious deterioration 

2 Between serious deterioration and potentially hazardous 

1 Potentially hazardous 

Based on these New York condition ratings, Cesare et al. [1992] 

developed stationary transition probabilities for numerous bridge elements. 

For a structural cast-in-place bridge deck with uncoated bars, the transitional 

probabilities are: p7 = 0.937, p6 = 0.940, p5 = 0.971, p4 = 0.974, p3 = 0.977, 

and p2 = 0.961 where p2 = 0.961 means that if the bridge deck is in Condition 

State 2, there is a 96.1% likelihood that it will remain in Condition State for 

the next year. Using these probabilities and a simulation of 10,000 bridges, 

Fig. 5.65 shows the probabilities of being in any given condition state at any 

time. The curves are much smoother when the probabilities do not change. 

The probabilistic serviceability flags can be developed for any bridge element 

for which the Markov chain data is available. 
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5.13.4   Example Using Serviceability Flags 

It is clear that the data can differ significantly from study to study. 

The engineer must use the study and assumptions that best fit the structure 

being considered when developing serviceability flags. For the case of Bridge 

E-17-AH, the following serviceability flags will be adopted to account for de- 

terioration of the slab, the railing, and the substructure. The concrete slab 

will be replaced every 28 years using the James et al. [1993] study for RC 

slabs on state highways in the western region deteriorating to condition state 

4. The railings will be replaced every 37 years using the Morrow and Johnston 

[1994] study as shown in Table 5.28. Considering that only a railroad runs 

underneath the bridge, the substructure will be replaced every 65 years using 

the Weyers et al. [1988] study. 

The results for Repair Option 1 (Replace Slab) with these service- 

ability flags are shown in Fig. 5.66 and can be compared to Fig. 5.53 for the 

same situation where serviceability flags were not in effect. The railing service- 

ability flag is never executed because the railing is replaced every time the slab 

gets replaced (every 28 years). In Fig. 5.66, the slab is replaced twice (years 28 

and 56) which is before the strength constraint requires it. As a result, there 

is little effect on the system reliability from the slab replacement. Slab repair 

is no longer effective at year 65 where the serviceability flag requires that the 

substructure, and thus the bridge, be replaced. 



375 

8.0 

6.0 

4.0 

2.0 

0.0 

8.0 

$  6.0 
c 

I" 4.0 
JD 
CO 

I  2.0 

0.0 

8.0 

6.0 

4.0 

2.0 

0.0 

Shear: Ext. Girder Shear: Int. Gird. 

"\\ 
Shear: i-E Gird. 

System 

H 1 h 

Moment: Int. Gird.        Moment: Ext. Gird.    Moment: l-E Gird. 

System 

Slab Pier Cap: Shear Footing: Moment 

System 

0.0 20.0 40.0 
Time (years) 

60.0 

Figure 5.66: Results of Repair Option 1 (Replace Slab) on 

Bridge E-17-AH Using Simplified Series-Parallel 

Model Requiring the Failure of Three Adjacent 

Girder Including Serviceability Flags 

80.0 



376 

All feasible repair options for the series-parallel bridge model where 

three adjacent girders are required to fail with serviceability flags implemented 

are shown in Fig. 5.67. These options can be compared to Fig. 5.55 where the 

serviceability flags are not used. The optimum repair strategy based on these 

options including serviceability flags is shown in Table 5.33. Compared to 

the optimum repair strategy without serviceability flags shown in Table 5.20, 

the serviceability flags result in earlier repairs, a shorter expected life of the 

bridge, and a more expensive optimum repair strategy. This will always be the 

case. At the most extreme case where all serviceability flags are overridden by 

strength concerns, the optimal solution would be the strength-based case. A 

serviceability flag will only shorten the life of the structure. 

Table 5.33: Optimum Lifetime Repair Strategy for Bridge E-17- 

AH Using Simplified Series-Parallel Model Requir- 

ing Failure of Three Adjacent Girders (Serviceability 

Flags Included) 

Expected Life (years) Optimum Repair Strategy Cost ($) 

0-28 Do nothing 0 

28-56 1@28 129,579 

56-65 1@28, 1@56 204,006 

>65 1@28, 5@56 347,284 

1@28 indicates option 1 (replace deck) at year 28 
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5.14   Summary 

This chapter has applied a system reliability optimization technique 

to an existing highway bridge, E-17-AH, that currently exists in Denver, Col- 

orado. The application of this technique was significantly more involved and 

complex for an actual bridge than for the hypothetical trusses using imaginary 

data in Chapter 4. There were numerous opportunities for assumption and 

engineering judgement along the way. The choice of failure modes, random 

variables, series-parallel models, live load and deterioration models, repair op- 

tions, discount rates, costs, and serviceability flags are all subject to debate 

and a change in any of them can produce radically different results. The choice 

of input data is therefore critically important and time consuming, yet very 

imprecise. This is an area that will only be improved through further use of 

the method and more research. 

With accurate input, the method demonstrates real potential for 

minimizing lifetime costs while maintaining a prescribed level of structural 

safety. While current deterministic design methods are certainly easier to 

implement, this proposed methodology accounts for uncertainty associated 

with the entire design process, structure redundancy, failure mode correlation, 

and the variability of conditions over time. The structure is considered as a 

total system rather than an a collection of unrelated individual components. 

The proposed system reliability optimization process produces an 
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optimum repair strategy for initial lifetime planning purposes. When a plan 

attempts to forecast the condition of a structure 30, 50 or even 100 years in the 

future, inevitably some of the initial assumptions will be proven to be wrong. 

Still, a plan based on sound concepts that can be modified as assumptions are 

verified, is far more useful than no plan or a plan based on faulty logic. It is 

therefore important for the optimized plan to be updated based on inspection 

results. 

Considering Bridge E-17-AH as an example, none of the plans put 

forth in this chapter accurately portray what has actually happened to this 

bridge over the last 54 years. Even the most optimistic forecasted lifetime 

strategy (see Table 5.20) predicted that the slab would have to be replaced 

after 50 years. The serviceability flag stated that the slab would be replaced 

after 28 years. In reality, Bridge E-17-AH has had no major replacements since 

it was originally constructed in 1942. The only major repair was to the bridge 

approach in 1992 for a cost of $68,000 which would not have been included in 

this model. In fact, after the most recent inspection [CDOT 1996b], the bridge 

was given NBI condition ratings for the slab, superstructure, and substructure 

of 6, 6, and 5, respectively. This would indicate that the bridge still has many 

years of expected life remaining. 

These results do not demean any of the plans or methods used in 

this chapter. Rather, they emphasize the need to modify and update the plan 

over time to account for actual behavior based on the results of inspections. 

For Bridge E-17-AH, any of the plans offered in this chapter would have been 
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modified over time and the assumptions would have been verified or altered. 

The methods for revising both the strength-based plan and the serviceability 

flags based on inspection results will be the subject of the next chapter. 


